Dichlorobis(triphenylphosphine)nickel(II)

Last updated
Dichlorobis(triphenylphosphine)­nickel(II)
TransNiCl2P2&tetrahedral.png
Dichlorobis(triphenylphosphine)nickel(II)-isomers-from-xtals-3D-bs-17.png
Names
IUPAC name
dichloridobis(triphenylphosphane)nickel(II)
Other names
Bis(triphenylphosphine)nickel(II) dichloride
Bis(triphenylphosphine)nickel(II) chloride
Dichlorobis(triphenylphosphine)nickel(II)
Bis(triphenylphosphine)nickel chloride
Identifiers
3D model (JSmol)
ChemSpider
EC Number
  • 238-154-8
PubChem CID
  • InChI=1S/2C18H15P.2ClH.Ni/c2*1-4-10-16(11-5-1)19(17-12-6-2-7-13-17)18-14-8-3-9-15-18;;;/h2*1-15H;2*1H;/q;;;;+2/p-2
    Key: ZBRJXVVKPBZPAN-UHFFFAOYSA-L
  • C1=CC=C(C=C1)P(C2=CC=CC=C2)C3=CC=CC=C3.C1=CC=C(C=C1)P(C2=CC=CC=C2)C3=CC=CC=C3.Cl[Ni]Cl
Properties
C36H30Cl2NiP2
Appearancepurple-blue (tetrahedral) or red (sq. planar)
Hazards
GHS labelling:
GHS-pictogram-exclam.svg GHS-pictogram-silhouette.svg
Danger
H302, H317, H350, H412
P201, P202, P261, P264, P270, P272, P273, P280, P281, P301+P312, P302+P352, P308+P313, P321, P330, P333+P313, P363, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dichlorobis(triphenylphosphine)nickel(II) refers to a pair of metal phosphine complexes with the formula NiCl2[P(C6H5)3]2. The compound exists as two isomers, a paramagnetic dark blue solid and a diamagnetic red solid. These complexes function as catalysts for organic synthesis. [1]

Contents

Synthesis and structure

The blue isomer is prepared by treating hydrated nickel chloride with triphenylphosphine in alcohols or glacial acetic acid: [1]

NiCl2•6H2O + 2 PPh3 → NiCl2(PPh3)2 + 6 H2O

When allowed to crystallise from chlorinated solvents, the tetrahedral isomer converts to the square planar isomer.

The square planar form is red and diamagnetic. The phosphine ligands are trans with respective Ni-P and Ni-Cl distances of 2.24 and 2.17 Å. [2] [3] The blue form is paramagnetic and features tetrahedral Ni(II) centers. In this isomer, the Ni-P and Ni-Cl distances are elongated at 2.32 and 2.21 Å. [4] [5]

As illustrated by the title complexes, tetrahedral and square planar isomers coexist in solutions of various four-coordinated nickel(II) complexes. Weak field ligands, as judged by the spectrochemical series, favor tetrahedral geometry and strong field ligands favor the square planar isomer. Both weak field (Cl) and strong field (PPh3) ligands comprise NiCl2(PPh3)2, hence this compound is borderline between the two geometries. Steric effects also affect the equilibrium; larger ligands favoring the less crowded tetrahedral geometry. [6]

Applications

The complex was first described by Walter Reppe who popularized its use in alkyne trimerisations and carbonylations. [7] Dichlorobis(triphenylphosphine)nickel(II) is a catalyst in Suzuki reactions, although usually inferior in terms of activity. [8]

A cross coupling reaction mediated by Ni(cod)2 and Ni(PPh3)2Cl2. Ni(PPh3)2Cl2 scheme.tif
A cross coupling reaction mediated by Ni(cod)2 and Ni(PPh3)2Cl2.

See also

Related Research Articles

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Rhodium(III) chloride</span> Chemical compound

Rhodium(III) chloride refers to inorganic compounds with the formula RhCl3(H2O)n, where n varies from 0 to 3. These are diamagnetic red-brown solids. The soluble trihydrated (n = 3) salt is the usual compound of commerce. It is widely used to prepare compounds used in homogeneous catalysis.

<span class="mw-page-title-main">Palladium(II) chloride</span> Chemical compound

Palladium(II) chloride, also known as palladium dichloride and palladous chloride, are the chemical compounds with the formula PdCl2. PdCl2 is a common starting material in palladium chemistry – palladium-based catalysts are of particular value in organic synthesis. It is prepared by the reaction of chlorine with palladium metal at high temperatures.

<span class="mw-page-title-main">Dicarbonyltris(triphenylphosphine)ruthenium(0)</span> Chemical compound

Dicarbonyltris(triphenylphosphine)ruthenium(0) or Roper's complex is a ruthenium metal carbonyl. In it, two carbon monoxide ligands and three triphenylphosphine ligands are coordinated to a central ruthenium(0) center.

Cycloocta-1,5-diene is a cyclic hydrocarbon with the chemical formula C8H12, specifically [−(CH2)2−CH=CH−]2.

<span class="mw-page-title-main">Triphenylphosphine oxide</span> Chemical compound

Triphenylphosphine oxide (often abbreviated TPPO) is the organophosphorus compound with the formula OP(C6H5)3, also written as Ph3PO or PPh3O (Ph = C6H5). It is one of the more common phosphine oxides. This colourless crystalline compound is a common but potentially useful waste product in reactions involving triphenylphosphine. It is a popular reagent to induce the crystallizing of chemical compounds.

Martin Arthur Bennett FRS is an Australian inorganic chemist. He gained recognition for studies on the co-ordination chemistry of tertiary phosphines, olefins, and acetylenes, and the relationship of their behaviour to homogeneous catalysis.

Spin states when describing transition metal coordination complexes refers to the potential spin configurations of the central metal's d electrons. For several oxidation states, metals can adopt high-spin and low-spin configurations. The ambiguity only applies to first row metals, because second- and third-row metals are invariably low-spin. These configurations can be understood through the two major models used to describe coordination complexes; crystal field theory and ligand field theory.

<span class="mw-page-title-main">Bis(triphenylphosphine)palladium chloride</span> Chemical compound

Bis(triphenylphosphine)palladium chloride is a coordination compound of palladium containing two triphenylphosphine and two chloride ligands. It is a yellow solid that is soluble in some organic solvents. It is used for palladium-catalyzed coupling reactions, e.g. the Sonogashira–Hagihara reaction. The complex is square planar. Many analogous complexes are known with different phosphine ligands.

Organoplatinum chemistry is the chemistry of organometallic compounds containing a carbon to platinum chemical bond, and the study of platinum as a catalyst in organic reactions. Organoplatinum compounds exist in oxidation state 0 to IV, with oxidation state II most abundant. The general order in bond strength is Pt-C (sp) > Pt-O > Pt-N > Pt-C (sp3). Organoplatinum and organopalladium chemistry are similar, but organoplatinum compounds are more stable and therefore less useful as catalysts.

<span class="mw-page-title-main">Dichlorotris(triphenylphosphine)ruthenium(II)</span> Chemical compound

Dichlorotris(triphenylphosphine)ruthenium(II) is a coordination complex of ruthenium. It is a chocolate brown solid that is soluble in organic solvents such as benzene. The compound is used as a precursor to other complexes including those used in homogeneous catalysis.

<span class="mw-page-title-main">Dichloro(1,3-bis(diphenylphosphino)propane)nickel</span> Chemical compound

Dichloro[1,3-bis(diphenylphosphino)propane]nickel a coordination complex with the formula NiCl2(dppp); where dppp is the diphosphine 1,3-bis(diphenylphosphino)propane. It is used as a catalyst in organic synthesis. The compound is a bright orange-red crystalline powder.

<span class="mw-page-title-main">Metal-phosphine complex</span>

A metal-phosphine complex is a coordination complex containing one or more phosphine ligands. Almost always, the phosphine is an organophosphine of the type R3P (R = alkyl, aryl). Metal phosphine complexes are useful in homogeneous catalysis. Prominent examples of metal phosphine complexes include Wilkinson's catalyst (Rh(PPh3)3Cl), Grubbs' catalyst, and tetrakis(triphenylphosphine)palladium(0).

<span class="mw-page-title-main">Bis(triphenylphosphine)platinum chloride</span> Chemical compound

Bis(triphenylphosphine)platinum chloride is a metal phosphine complex with the formula PtCl2[P(C6H5)3]2. Cis- and trans isomers are known. The cis isomer is a white crystalline powder, while the trans isomer is yellow. Both isomers are square planar about the central platinum atom. The cis isomer is used primarily as a reagent for the synthesis of other platinum compounds.

<span class="mw-page-title-main">Bis(triphenylphosphine)rhodium carbonyl chloride</span> Chemical compound

Bis(triphenylphosphine)rhodium carbonyl chloride is the organorhodium complex with the formula [RhCl(CO)(PPh3)2]. This complex of rhodium(I) is a bright yellow, air-stable solid. It is the Rh analogue of Vaska's complex, the corresponding iridium complex. With regards to its structure, the complex is square planar with mutually trans triphenylphosphine (PPh3) ligands. The complex is a versatile homogeneous catalyst.

A transition metal phosphido complex is a coordination complex containing a phosphido ligand (R2P, where R = H, organic substituent). With two lone pairs on phosphorus, the phosphido anion (R2P) is comparable to an amido anion (R2N), except that the M-P distances are longer and the phosphorus atom is more sterically accessible. For these reasons, phosphido is often a bridging ligand. The -PH2 ion or ligand is also called phosphanide or phosphido ligand.

<span class="mw-page-title-main">Dichloro(1,2-bis(diphenylphosphino)ethane)nickel</span> Chemical compound

Dichloro[1,2-bis(diphenylphosphino)ethane]nickel is a coordination complex with the formula NiCl2(dppe); where dppe is the diphosphine 1,2-bis(diphenylphosphino)ethane. It is used as a reagent and as a catalyst. The compound is a bright orange-red diamagnetic solid. The complex adopts a square planar geometry.

<i>cis</i>-Dichlorobis(bipyridine)ruthenium(II) Chemical compound

cis-Dichlorobis(bipyridine)ruthenium(II) is the coordination complex with the formula RuCl2(bipy)2, where bipy is 2,2'-bipyridine. It is a dark green diamagnetic solid that is a precursor to many other complexes of ruthenium, mainly by substitution of the two chloride ligands. The compound has been crystallized as diverse hydrates.

Palladium forms a variety of ionic, coordination, and organopalladium compounds, typically with oxidation state Pd0 or Pd2+. Palladium(III) compounds have also been reported. Palladium compounds are frequently used as catalysts in cross-coupling reactions such as the Sonogashira coupling and Suzuki reaction.

<span class="mw-page-title-main">Transition metal complexes of phosphine oxides</span>

Transition metal complexes of phosphine oxides are coordination complex containing one or more phosphine oxide ligands. Many phosphine oxides exist and most behave as hard Lewis bases. Almost invariably, phosphine oxides bind metals by formation of M-O bonds.

References

  1. 1 2 Montgomery, J. Science of Synthesis Georg Thiene Verlag KG, Vol. 1, p 11, CODEN: SSCYJ9
  2. Batsanov, Andrei S.; Howard, Judith A. K. (2001). "trans-Dichlorobis(triphenylphosphine)nickel(II) bis(dichloromethane) solvate: redetermination at 120 K". Acta Crystallogr E. 57 (7): 308–309. Bibcode:2001AcCrE..57M.308B. doi:10.1107/S1600536801008741. S2CID   97381117.
  3. Corain, B.; Longato, B.; Angeletti, R.; Valle, G. (1985). "trans:-[Dichlorobis(triphenylphosphine)nickel(II)]·(C2H4Cl2)2 a clathrate of the allogon of venanzi's tetrahedral complex". Inorg. Chim. Acta. 104: 15–18. doi:10.1016/S0020-1693(00)83780-9.
  4. Garton, G.; Henn, D. E.; Powell, H. M.; Venanzi, L. M. (1963). "Tetrahedral nickel(II) complexes and the factors determining their formation. Part V. The tetrahedral co-ordination of nickel in dichlorobistriphenylphosphinenickel". J. Chem. Soc. 1963: 3625–3629. doi:10.1039/JR9630003625.
  5. Brammer, L.; Stevens, E. D. (1989). "Structure of dichlorobis(triphenylphosphine)nickel(II)". Acta Crystallogr C. 45 (3): 400–403. Bibcode:1989AcCrC..45..400B. doi:10.1107/S0108270188011692.
  6. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN   978-0-08-037941-8.
  7. Reppe, Walter; Sweckendiek, Walter (1948). "Cyclisierende Polymerisation von Acetylen. III Benzol, Benzolderivate und hydroaromatische Verbindungen". Justus Liebigs Annalen der Chemie. 560 (1): 104–16. doi:10.1002/jlac.19485600104.
  8. Han, Fu-She (2013). "Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: A Remarkable Advance from Palladium to Nickel Catalysts". Chemical Society Reviews. 42 (12): 5270–98. doi:10.1039/c3cs35521g. PMID   23460083.
  9. Johnson, Jeffrey S.; Berman, Ashley M. (2005-07-01). "Nickel-Catalyzed Electrophilic Amination of Organozinc Halides". Synlett. 2005 (11): 1799–1801. doi:10.1055/s-2005-871567.
  10. Quasdorf, Kyle W.; Garg, Neil K. (2010). "Bis(tricyclohexylphosphine)dichloronickel". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rn01201. ISBN   978-0-471-93623-7.