Diktyoma

Last updated
Diktyoma
Medulloepithelioma Histology.jpg
Histopathology of medulloepithelioma showing characteristic neural tube like strands.

Diktyoma, or ciliary body medulloepithelioma, or teratoneuroma, is a rare tumor arising from primitive medullary epithelium in the ciliary body of the eye. Almost all diktyomas arise in the ciliary body, although, rarely, they may arise from the optic nerve head or retina. [1]

Contents

The name "diktyoma" comes from its characteristic findings on histology.

Signs and Symptoms

The most common symptoms of diktyoma are vision loss and pain, while the most common signs are leukocoria and presence of a mass in the iris or ciliary body. [1] [2] Other signs and symptoms include lens subluxation, glaucoma, cataract, exophthalmos, buphthalmos, strabismus, and ptosis.

Diagnosis

Classification

Diktyoma is classified into teratoid and nonteratoid types, based on heteroplastic tissue in the former. Each type may be sub-classified as benign or malignant based on histology. [3]

Based on histology, the tumor is classified as malignant if it contains poorly differentiated neuroblasts, nuclear pleomorphism, markedly abnormal mitotic activity, sarcomatous components, or invasion into the uvea, cornea, or sclera. [1] Most diktyomas are malignant. [1] [4]

Imaging findings

Imaging studies such as ultrasonography (US), Computerized Tomography (CT) and Magnetic Resonance Imaging (MRI) may aid diagnosis. On ultrasound, diktyomas typically appear as echogenic, irregularly shaped to ovoid masses. [5] [6] Ultrasound is excellent for demonstrating cystic collections of vitreous fluid in the tumor, and may show calcifications in the teratoid type.

On CT, diktyomas typically appear as dense, irregular masses in the ciliary body, which enhances with administration of intravenous contrast material. [7] CT is excellent for demonstrating dystrophic calcifications in the teratoid type. [4] [6]

On MRI, diktyomas typically appear slightly to moderately hyperdense to vitreous on T1-weighted images and hypodense on T2-weighted images, with marked homogeneous enhancement (except for prominent parts of cystic components, which, if present, may impart heterogeneity) after administration of intravenous contrast material. [6] MRI is excellent for detection of tumors as small as 2 millimeters. [8]

Gross pathologic findings

Grossly, the tumor appears white, gray, or yellow, with irregular surface, often studded with small cysts. [3] More small cysts may be found on cut sections. These cysts may break off the surface and float freely in aqueous or vitreous humour. [4] [9] The tumor may also contain chalky grayish-white particles. The lens may be covered by a semi-translucent membrane in some case. [3] Tumor may invade locally to involve the iris or anterior retina, or through the cornea or sclera. In advanced cases, tumor may fill the entire globe, similar to retinoblastoma. [3]

Histologic findings

Microscopically, the tumor cells recapitulate embryonic sensory retina or nonpigmented ciliary epithelium. The chalky grayish-white particles within the tumor mass correspond to foci of cartilage on histology; the semi-translucent membrane covering the lens in some tumors corresponds to spreading neoplastic cells. [4] [6]

Tumor cells form a characteristic diktyomatous pattern, with folded cords and sheets resembling a fisherman's net. [3] In early development of the retina, the medullary epithelial cells acquire polarity, such that a basement membrane associated with the vitreous forms the internal limiting membrane on one side, while terminal bars form the outer limiting membrane on the other side. Proliferating tumor cells of diktyoma maintain the same polarity, arranged in cords and sheets folding back upon themselves. Depending on the direction of the folding, some folds surround fluid collection, while others do not. [1] These fluid-filled spaces correspond to the grossly observed small cysts, which are mainly composed of vitreous humor. [1]

About 30-50 percent of diktyomas contain heteroplastic elements, and thus belong to the teratoid subtype. [1] [4] These heteroplastic elements may include hyaline cartilage, rhabdomyoblasts, and neuroglial tissue. [3] Sarcomatous elements may be seen in malignant tumors. Foci of dystrophic calcifications may be present.

Treatment

Diktyoma is treated by either close observation, or enucleation of the eye. Surgical resection is no longer done due to risk of late complications and metastases. Small lesions can be treated with iodine-125 plaque brachytherapy. [10] Distant metastases and mortality are rare. Mortality may occur in patients with extraocular extension to the brain. [1] [4] [6] Lack of glial differentiation, as demonstrated by negative staining for glial fibrillary acidic protein (GFAP), may confer a favourable prognosis. [11]

Epidemiology

Mean age at diagnosis is 5 years. [1] [2] While most cases occur in young children, adult cases have been reported. [1] [9] Incidence is similar in male and female and among different races.

Related Research Articles

<span class="mw-page-title-main">Retina</span> Part of the eye

The retina is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then processes that image within the retina and sends nerve impulses along the optic nerve to the visual cortex to create visual perception. The retina serves a function which is in many ways analogous to that of the film or image sensor in a camera.

<span class="mw-page-title-main">Cornea</span> Transparent front layer of the eye

The cornea is the transparent front part of the eye that covers the iris, pupil, and anterior chamber. Along with the anterior chamber and lens, the cornea refracts light, accounting for approximately two-thirds of the eye's total optical power. In humans, the refractive power of the cornea is approximately 43 dioptres. The cornea can be reshaped by surgical procedures such as LASIK.

<span class="mw-page-title-main">Vitreous body</span> Gel in eyeballs

The vitreous body is the clear gel that fills the space between the lens and the retina of the eyeball in humans and other vertebrates. It is often referred to as the vitreous humor, from Latin meaning liquid, or simply "the vitreous". Vitreous fluid or "liquid vitreous" is the liquid component of the vitreous gel, found after a vitreous detachment. It is not to be confused with the aqueous humor, the other fluid in the eye that is found between the cornea and lens.

<span class="mw-page-title-main">Choroid</span> Vascular layer of the eye

The choroid, also known as the choroidea or choroid coat, is a part of the uvea, the vascular layer of the eye. It contains connective tissues, and lies between the retina and the sclera. The human choroid is thickest at the far extreme rear of the eye, while in the outlying areas it narrows to 0.1 mm. The choroid provides oxygen and nourishment to the outer layers of the retina. Along with the ciliary body and iris, the choroid forms the uveal tract.

<span class="mw-page-title-main">Amaurosis fugax</span> Medical condition

Amaurosis fugax is a painless temporary loss of vision in one or both eyes.

This is a partial list of human eye diseases and disorders.

<span class="mw-page-title-main">Fluorescein angiography</span> Technique for examining the circulation of the retina and choroid of the eye

Fluorescein angiography (FA), fluorescent angiography (FAG), or fundus fluorescein angiography (FFA) is a technique for examining the circulation of the retina and choroid using a fluorescent dye and a specialized camera. Sodium fluorescein is added into the systemic circulation, the retina is illuminated with blue light at a wavelength of 490 nanometers, and an angiogram is obtained by photographing the fluorescent green light that is emitted by the dye. The fluorescein is administered intravenously in intravenous fluorescein angiography (IVFA) and orally in oral fluorescein angiography (OFA). The test is a dye tracing method.

<span class="mw-page-title-main">Ciliary body</span> Part of the eye

The ciliary body is a part of the eye that includes the ciliary muscle, which controls the shape of the lens, and the ciliary epithelium, which produces the aqueous humor. The aqueous humor is produced in the non-pigmented portion of the ciliary body. The ciliary body is part of the uvea, the layer of tissue that delivers oxygen and nutrients to the eye tissues. The ciliary body joins the ora serrata of the choroid to the root of the iris.

<span class="mw-page-title-main">Serous tumour</span> Medical condition

A serous tumour is a neoplasm that typically has papillary to solid formations of tumor cells with crowded nuclei, and which typically arises on the modified Müllerian-derived serous membranes that surround the ovaries in females. Such ovarian tumors are part of the surface epithelial-stromal tumour group of ovarian tumors. They are common neoplasms with a strong tendency to occur bilaterally, and they account for approximately a quarter of all ovarian tumors.

<span class="mw-page-title-main">Eye neoplasm</span> Medical condition

An eye neoplasm is a tumor of the eye. A rare type of tumor, eye neoplasms can affect all parts of the eye, and can either be benign or malignant (cancerous), in which case it is known as eye cancer. Eye cancers can be primary or metastatic cancer. The two most common cancers that spread to the eye from another organ are breast cancer and lung cancer. Other less common sites of origin include the prostate, kidney, thyroid, skin, colon and blood or bone marrow.

<span class="mw-page-title-main">Optic disc drusen</span> Medical condition

Optic disc drusen (ODD) are globules of mucoproteins and mucopolysaccharides that progressively calcify in the optic disc. They are thought to be the remnants of the axonal transport system of degenerated retinal ganglion cells. ODD have also been referred to as congenitally elevated or anomalous discs, pseudopapilledema, pseudoneuritis, buried disc drusen, and disc hyaline bodies.

<span class="mw-page-title-main">Optic pit</span> Medical condition

Optic pit, optic nerve pit, or optic disc pit (ODP) is rare a congenital excavation (or regional depression) of the optic disc (also optic nerve head), resulting from a malformation during development of the eye. The incidence of ODP is 1 in 10,000 people with no predilection for either gender. There is currently no known risk factors for their development. Optic pits are important because they are associated with posterior vitreous detachments (PVD) and even serous retinal detachments.

<span class="mw-page-title-main">Intraocular hemorrhage</span> Medical condition

Intraocular hemorrhage is bleeding inside the eye. Bleeding can occur from any structure of the eye where there is vasculature or blood flow, including the anterior chamber, vitreous cavity, retina, choroid, suprachoroidal space, or optic disc.

<span class="mw-page-title-main">Mammalian eye</span>

Mammals normally have a pair of eyes. Although mammalian vision is not so excellent as bird vision, it is at least dichromatic for most of mammalian species, with certain families possessing a trichromatic color perception.

<span class="mw-page-title-main">Persistent fetal vasculature</span> Medical condition

Persistent fetal vasculature(PFV), also known as persistent fetal vasculature syndrome (PFVS), and until 1997 known primarily as persistent hyperplastic primary vitreous (PHPV), is a rare congenital anomaly which occurs when blood vessels within the developing eye, known as the embryonic hyaloid vasculature network, fail to regress as they normally would in-utero after the eye is fully developed. Defects which arise from this lack of vascular regression are diverse; as a result, the presentation, symptoms, and prognosis of affected patients vary widely, ranging from clinical insignificance to irreversible blindness. The underlying structural causes of PFV are considered to be relatively common, and the vast majority of cases do not warrant additional intervention. When symptoms do manifest, however, they are often significant, causing detrimental and irreversible visual impairment. Persistent fetal vasculature heightens the lifelong risk of glaucoma, cataracts, intraocular hemorrhages, and Retinal detachments, accounting for the visual loss of nearly 5% of the blind community in the developed world. In diagnosed cases of PFV, approximately 90% of patients with a unilateral disease have associated poor vision in the affected eye.

Proliferative vitreoretinopathy (PVR) is a disease that develops as a complication of rhegmatogenous retinal detachment. PVR occurs in about 8–10% of patients undergoing primary retinal detachment surgery and prevents the successful surgical repair of rhegmatogenous retinal detachment. PVR can be treated with surgery to reattach the detached retina but the visual outcome of the surgery is very poor. A number of studies have explored various possible adjunctive agents for the prevention and treatment of PVR, such as methotrexate, although none have yet been licensed for clinical use.

Sohan Singh Hayreh was an ophthalmologist, clinical scientist, and professor emeritus of ophthalmology at the University of Iowa. As one of the pioneers in the field of fluorescein angiography, he was generally acknowledged to be a leading authority in vascular diseases of the eye and the optic nerve. For over 60 years, Hayreh was actively involved in basic, experimental, and clinical research in ophthalmology, publishing over 400 original peer-reviewed articles in various international ophthalmic journals, six classical monographs and books in his field of research, and more than 50 chapters in ophthalmic books. He made many seminal observations dealing with the ocular circulation in health and disease, the optic disc and the optic nerve, retinal and choroidal vascular disorders, glaucomatous optic neuropathy, fundus changes in malignant arterial hypertension, ocular neovascularization, rheumatologic disorders of the eye, and nocturnal arterial hypotension. He was an elected fellow of the National Academy of Medical Sciences.

<span class="mw-page-title-main">Medulloepithelioma</span> Medical condition

Medulloepithelioma is a rare, primitive, fast-growing brain tumour thought to stem from cells of the embryonic medullary cavity. Tumours originating in the ciliary body of the eye are referred to as embryonal medulloepitheliomas, or diktyomas.

Odontogenic cyst are a group of jaw cysts that are formed from tissues involved in odontogenesis. Odontogenic cysts are closed sacs, and have a distinct membrane derived from rests of odontogenic epithelium. It may contain air, fluids, or semi-solid material. Intra-bony cysts are most common in the jaws, because the mandible and maxilla are the only bones with epithelial components. That odontogenic epithelium is critical in normal tooth development. However, epithelial rests may be the origin for the cyst lining later. Not all oral cysts are odontogenic cysts. For example, mucous cyst of the oral mucosa and nasolabial duct cyst are not of odontogenic origin.

<span class="mw-page-title-main">Melanocytoma</span>

A melanocytoma is a rare pigmented tumor that has been described as a variant of the melanocytic nevus and is a derivative of the neural crest. The term "melanocytoma" was introduced by Limas and Tio in 1972.

References

  1. 1 2 3 4 5 6 7 8 9 10 Broughton, Warren L.; Zimmerman, Lorenz E. (March 1978). "A Clinicopathologic Study of 56 Cases of Intraocular Medulloepitheliomas". American Journal of Ophthalmology. 85 (3): 407–418. doi:10.1016/S0002-9394(14)77739-6.
  2. 1 2 McLeanIW, Burnier MN, Zimmerman LE, Jakobiec FA. Tumors of the retina. In: Rosai J, Sobin LH, eds. Atlas of tumor pathology: tumors of the eye and ocular adnexa. Washington, DC: Armed Forces Institute of Pathology, 1994; 101–135.
  3. 1 2 3 4 5 6 Chung, Ellen M.; Specht, Charles S.; Schroeder, Jason W. (July 2007). "Pediatric Orbit Tumors and Tumorlike Lesions: Neuroepithelial Lesions of the Ocular Globe and Optic Nerve". RadioGraphics. 27 (4): 1159–1186. doi:10.1148/rg.274075014. PMID   17620473.
  4. 1 2 3 4 5 6 Shields, Jerry A.; Eagle, Ralph C.; Shields, Carol L.; De Potter, Patrick (December 1996). "Congenital Neoplasms of the Nonpigmented Ciliary Epithelium (medulloepithelioma)". Ophthalmology. 103 (12): 1998–2006. doi:10.1016/S0161-6420(96)30394-1.
  5. Foster, Robert E; Murray, Timothy G; Byrne, Sandra Frazier; Hughes, J.Randall; Gendron, B.Kym; Ehlies, Fiona J; Nicholson, Donald H (September 2000). "Echographic features of medulloepithelioma". American Journal of Ophthalmology. 130 (3): 364–366. doi:10.1016/S0002-9394(00)00542-0.
  6. 1 2 3 4 5 Vajaranant, Thasarat S.; Mafee, Mahmood F.; Kapur, Rashmi; Rapoport, Mark; Edward, Deepak P. (February 2005). "Medulloepithelioma of the Ciliary Body and Optic Nerve: Clinicopathologic, CT, and MR Imaging Features". Neuroimaging Clinics of North America. 15 (1): 69–83. doi:10.1016/j.nic.2005.02.008. PMID   15927861.
  7. Peyman, GA; Mafee, MF (May 1987). "Uveal melanoma and similar lesions: the role of magnetic resonance imaging and computed tomography". Radiologic clinics of North America. 25 (3): 471–86. PMID   3554332.
  8. De Potter, Patrick; Shield, Carol L.; Shields, Jerry A.; Flanders, Adam E. (November 1996). "The Role of Magnetic Resonance Imaging in Children with Intraocular Tumors and Simulating Lesions". Ophthalmology. 103 (11): 1774–1783. doi:10.1016/S0161-6420(96)30428-4.
  9. 1 2 FontR, Croxatto J, Rao N. Tumors of the optic nerve and optic nerve head: medulloepithelioma. In: Silverberg S, Sobin L, eds. AFIP atlas of tumor pathology: tumors of the eye and ocular adnexa. Washington, DC: American Registry of Pathology, 2006; 148–149.
  10. Davidorf, Frederick H.; Craig, Elson; Birnbaum, Lee; Wakely, Paul (June 2002). "Management of medulloepithelioma of the ciliary body with brachytherapy". American Journal of Ophthalmology. 133 (6): 841–843. doi:10.1016/S0002-9394(02)01432-0.
  11. Janss, Anna J.; Yachnis, Anthony T.; Silber, Jeffrey H.; Trojanowski, John Q.; Lee, Virginia M.-Y.; Sutton, Leslie N.; Perilongo, Giorgio; Rorke, Lucy B.; Phillips, Peter C. (April 1996). "Glial differentiation predicts poor clinical outcome in primitive neuroectodermal brain tumors". Annals of Neurology. 39 (4): 481–489. doi:10.1002/ana.410390410. PMID   8619526.