Discrete spectrum (mathematics)

Last updated

In mathematics, specifically in spectral theory, a discrete spectrum of a closed linear operator is defined as the set of isolated points of its spectrum such that the rank of the corresponding Riesz projector is finite.

Contents

Definition

A point in the spectrum of a closed linear operator in the Banach space with domain is said to belong to discrete spectrum of if the following two conditions are satisfied: [1]

  1. is an isolated point in ;
  2. The rank of the corresponding Riesz projector is finite.

Here is the identity operator in the Banach space and is a smooth simple closed counterclockwise-oriented curve bounding an open region such that is the only point of the spectrum of in the closure of ; that is,

Relation to normal eigenvalues

The discrete spectrum coincides with the set of normal eigenvalues of :

[2] [3] [4]

Relation to isolated eigenvalues of finite algebraic multiplicity

In general, the rank of the Riesz projector can be larger than the dimension of the root lineal of the corresponding eigenvalue, and in particular it is possible to have , . So, there is the following inclusion:

In particular, for a quasinilpotent operator

one has , , , .

Relation to the point spectrum

The discrete spectrum of an operator is not to be confused with the point spectrum , which is defined as the set of eigenvalues of . While each point of the discrete spectrum belongs to the point spectrum,

the converse is not necessarily true: the point spectrum does not necessarily consist of isolated points of the spectrum, as one can see from the example of the left shift operator, For this operator, the point spectrum is the unit disc of the complex plane, the spectrum is the closure of the unit disc, while the discrete spectrum is empty:

See also

Related Research Articles

In mathematics, particularly linear algebra and functional analysis, a spectral theorem is a result about when a linear operator or matrix can be diagonalized. This is extremely useful because computations involving a diagonalizable matrix can often be reduced to much simpler computations involving the corresponding diagonal matrix. The concept of diagonalization is relatively straightforward for operators on finite-dimensional vector spaces but requires some modification for operators on infinite-dimensional spaces. In general, the spectral theorem identifies a class of linear operators that can be modeled by multiplication operators, which are as simple as one can hope to find. In more abstract language, the spectral theorem is a statement about commutative C*-algebras. See also spectral theory for a historical perspective.

In mathematics, particularly in linear algebra, a skew-symmetricmatrix is a square matrix whose transpose equals its negative. That is, it satisfies the condition

In mathematics, particularly in functional analysis, the spectrum of a bounded linear operator is a generalisation of the set of eigenvalues of a matrix. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if is not invertible, where I is the identity operator. The study of spectra and related properties is known as spectral theory, which has numerous applications, most notably the mathematical formulation of quantum mechanics.

Jordan normal form Form of a matrix indicating its eigenvalues and their algebraic multiplicities

In linear algebra, a Jordan normal form, also known as a Jordan canonical form or JCF, is an upper triangular matrix of a particular form called a Jordan matrix representing a linear operator on a finite-dimensional vector space with respect to some basis. Such a matrix has each non-zero off-diagonal entry equal to 1, immediately above the main diagonal, and with identical diagonal entries to the left and below them.

In functional analysis, a branch of mathematics, a compact operator is a linear operator L from a Banach space X to another Banach space Y, such that the image under L of any bounded subset of X is a relatively compact subset of Y. Such an operator is necessarily a bounded operator, and so continuous.

In linear algebra and functional analysis, the min-max theorem, or variational theorem, or Courant–Fischer–Weyl min-max principle, is a result that gives a variational characterization of eigenvalues of compact Hermitian operators on Hilbert spaces. It can be viewed as the starting point of many results of similar nature.

Singular value in mathematics, the square root of an eigenvalue of a nonnegative self-adjoint operator

In mathematics, in particular functional analysis, the singular values, or s-numbers of a compact operator T : XY acting between Hilbert spaces X and Y, are the square roots of non-negative eigenvalues of the self-adjoint operator T*T.

The spectrum of a linear operator that operates on a Banach space consists of all scalars such that the operator does not have a bounded inverse on . The spectrum has a standard decomposition into three parts:

In mathematics, the essential spectrum of a bounded operator is a certain subset of its spectrum, defined by a condition of the type that says, roughly speaking, "fails badly to be invertible".

For any twice-differentiable real-valued function f defined on Euclidean space Rn, the Laplace operator takes f to the divergence of its gradient vector field, which is the sum of the n second derivatives of f with respect to each vector of an orthonormal basis for Rn. In the field of differential geometry, this operator is generalized to operate on functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. This more general operator goes by the name Laplace–Beltrami operator, after Pierre-Simon Laplace and Eugenio Beltrami. Like the Laplacian, the Laplace–Beltrami operator is defined as the divergence of the gradient, and is a linear operator taking functions into functions. The operator can be extended to operate on tensors as the divergence of the covariant derivative. Alternatively, the operator can be generalized to operate on differential forms using the divergence and exterior derivative. The resulting operator is called the Laplace–de Rham operator.

In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.

In mathematics, the resolvent formalism is a technique for applying concepts from complex analysis to the study of the spectrum of operators on Banach spaces and more general spaces. Formal justification for the manipulations can be found in the framework of holomorphic functional calculus.

In mathematics, the support of a measure μ on a measurable topological space is a precise notion of where in the space X the measure "lives". It is defined to be the smallest (closed) subset of X for which every open neighbourhood of every point of the set has positive measure.

In linear algebra and operator theory, the resolvent set of a linear operator is a set of complex numbers for which the operator is in some sense "well-behaved". The resolvent set plays an important role in the resolvent formalism.

In quantum mechanics, the expectation value is the probabilistic expected value of the result (measurement) of an experiment. It can be thought of as an average of all the possible outcomes of a measurement as weighted by their likelihood, and as such it is not the most probable value of a measurement; indeed the expectation value may have zero probability of occurring. It is a fundamental concept in all areas of quantum physics.

In mathematics, the Jordan–Chevalley decomposition, named after Camille Jordan and Claude Chevalley, expresses a linear operator as the sum of its commuting semisimple part and its nilpotent parts. The multiplicative decomposition expresses an invertible operator as the product of its commuting semisimple and unipotent parts. The decomposition is easy to describe when the Jordan normal form of the operator is given, but it exists under weaker hypotheses than the existence of a Jordan normal form. Analogues of the Jordan-Chevalley decomposition exist for elements of linear algebraic groups, Lie algebras, and Lie groups, and the decomposition is an important tool in the study of these objects.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

Arithmetic Fuchsian groups are a special class of Fuchsian groups constructed using orders in quaternion algebras. They are particular instances of arithmetic groups. The prototypical example of an arithmetic Fuchsian group is the modular group . They, and the hyperbolic surface associated to their action on the hyperbolic plane often exhibit particularly regular behaviour among Fuchsian groups and hyperbolic surfaces.

In mathematics, specifically in spectral theory, an eigenvalue of a closed linear operator is called normal if the space admits a decomposition into a direct sum of a finite-dimensional generalized eigenspace and an invariant subspace where has a bounded inverse. The set of normal eigenvalues coincides with the discrete spectrum.

In mathematics, or more specifically in spectral theory, the Riesz projector is the projector onto the eigenspace corresponding to a particular eigenvalue of an operator. It was introduced by Frigyes Riesz in 1912.

References

  1. Reed, M.; Simon, B. (1978). Methods of modern mathematical physics, vol. IV. Analysis of operators. Academic Press [Harcourt Brace Jovanovich Publishers], New York.
  2. Gohberg, I. C; Kreĭn, M. G. (1960). "Fundamental aspects of defect numbers, root numbers and indexes of linear operators". American Mathematical Society Translations. 13: 185–264.
  3. Gohberg, I. C; Kreĭn, M. G. (1969). Introduction to the theory of linear nonselfadjoint operators. American Mathematical Society, Providence, R.I.
  4. Boussaid, N.; Comech, A. (2019). Nonlinear Dirac equation. Spectral stability of solitary waves. American Mathematical Society, Providence, R.I. ISBN   978-1-4704-4395-5.