Dorina Mitrea

Last updated

Dorina Irena-Rita Mitrea (born April 30, 1965) [1] is a Romanian-American mathematician known for her work in harmonic analysis, partial differential equations, and the theory of distributions, and in mathematics education. She is a professor of mathematics and chair of the mathematics department at Baylor University. [2]

Contents

Education and career

Mitrea earned a master's degree in 1987 from the University of Bucharest. Her thesis, Riemann’s Theorem for Simply Connected Riemann Surfaces, was supervised by Cabiria Andreian Cazacu. [3] She completed her doctorate in 1996 from the University of Minnesota. Her dissertation, Layer Potential Operators and Boundary Value Problems for Differential Forms on Lipschitz Domains, was supervised by Eugene Barry Fabes. [4]

Mitrea joined the University of Missouri mathematics faculty in 1996, [3] and became M. & R. Houchins Distinguished Professor of Mathematics at the University of Missouri in 2016. [5] She moved to Baylor as professor and chair in 2019. [2]

Books

Mitrea is the author of:

Personal life

She is married to Marius Mitrea. Her husband is also a mathematician, and moved with Mitrea from Missouri to Baylor. [2]

Related Research Articles

<span class="mw-page-title-main">Differential topology</span> Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

<span class="mw-page-title-main">Differential geometry</span> Branch of mathematics dealing with functions and geometric structures on differentiable manifolds

Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky. The simplest examples of smooth spaces are the plane and space curves and surfaces in the three-dimensional Euclidean space, and the study of these shapes formed the basis for development of modern differential geometry during the 18th and 19th centuries.

<span class="mw-page-title-main">Vector calculus</span> Calculus of vector-valued functions

Vector calculus, or vector analysis, is concerned with differentiation and integration of vector fields, primarily in 3-dimensional Euclidean space The term "vector calculus" is sometimes used as a synonym for the broader subject of multivariable calculus, which spans vector calculus as well as partial differentiation and multiple integration. Vector calculus plays an important role in differential geometry and in the study of partial differential equations. It is used extensively in physics and engineering, especially in the description of electromagnetic fields, gravitational fields, and fluid flow.

In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization of the Riemann mapping theorem from simply connected open subsets of the plane to arbitrary simply connected Riemann surfaces.

<span class="mw-page-title-main">Shing-Tung Yau</span> Chinese mathematician

Shing-Tung Yau is a Chinese-American mathematician and the William Caspar Graustein Professor of Mathematics at Harvard University. In April 2022, Yau announced retirement from Harvard to become Chair Professor of mathematics at Tsinghua University.

In mathematics, Hodge theory, named after W. V. D. Hodge, is a method for studying the cohomology groups of a smooth manifold M using partial differential equations. The key observation is that, given a Riemannian metric on M, every cohomology class has a canonical representative, a differential form that vanishes under the Laplacian operator of the metric. Such forms are called harmonic.

<span class="mw-page-title-main">Eugenio Calabi</span> Italian-born American mathematician

Eugenio Calabi is an Italian-born American mathematician and the Thomas A. Scott Professor of Mathematics, Emeritus, at the University of Pennsylvania, specializing in differential geometry, partial differential equations and their applications.

Hopf–Rinow theorem is a set of statements about the geodesic completeness of Riemannian manifolds. It is named after Heinz Hopf and his student Willi Rinow, who published it in 1931. Stefan Cohn-Vossen extended part of the Hopf–Rinow theorem to the context of certain types of metric spaces.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician (born 1943)

Richard Streit Hamilton is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology. Grigori Perelman built upon Hamilton's results to prove the conjectures, and was awarded a Millennium Prize for his work. However, Perelman declined the award, regarding Hamilton's contribution as being equal to his own.

<span class="mw-page-title-main">Shiu-Yuen Cheng</span> Hong Kong mathematician

Shiu-Yuen Cheng (鄭紹遠) is a Hong Kong mathematician. He is currently the Chair Professor of Mathematics at the Hong Kong University of Science and Technology. Cheng received his Ph.D. in 1974, under the supervision of Shiing-Shen Chern, from University of California at Berkeley. Cheng then spent some years as a post-doctoral fellow and assistant professor at Princeton University and the State University of New York at Stony Brook. Then he became a full professor at University of California at Los Angeles. Cheng chaired the Mathematics departments of both the Chinese University of Hong Kong and the Hong Kong University of Science and Technology in the 1990s. In 2004, he became the Dean of Science at HKUST. In 2012, he became a fellow of the American Mathematical Society.

<span class="mw-page-title-main">Heat kernel</span> Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

<span class="mw-page-title-main">Geometric analysis</span>

Geometric analysis is a mathematical discipline where tools from differential equations, especially elliptic partial differential equations (PDEs), are used to establish new results in differential geometry and differential topology. The use of linear elliptic PDEs dates at least as far back as Hodge theory. More recently, it refers largely to the use of nonlinear partial differential equations to study geometric and topological properties of spaces, such as submanifolds of Euclidean space, Riemannian manifolds, and symplectic manifolds. This approach dates back to the work by Tibor Radó and Jesse Douglas on minimal surfaces, John Forbes Nash Jr. on isometric embeddings of Riemannian manifolds into Euclidean space, work by Louis Nirenberg on the Minkowski problem and the Weyl problem, and work by Aleksandr Danilovich Aleksandrov and Aleksei Pogorelov on convex hypersurfaces. In the 1980s fundamental contributions by Karen Uhlenbeck, Clifford Taubes, Shing-Tung Yau, Richard Schoen, and Richard Hamilton launched a particularly exciting and productive era of geometric analysis that continues to this day. A celebrated achievement was the solution to the Poincaré conjecture by Grigori Perelman, completing a program initiated and largely carried out by Richard Hamilton.

In the mathematical field of differential geometry, a smooth map between Riemannian manifolds is called harmonic if its coordinate representatives satisfy a certain nonlinear partial differential equation. This partial differential equation for a mapping also arises as the Euler-Lagrange equation of a functional called the Dirichlet energy. As such, the theory of harmonic maps contains both the theory of unit-speed geodesics in Riemannian geometry and the theory of harmonic functions.

Vladimir Gilelevich Maz'ya is a Russian-born Swedish mathematician, hailed as "one of the most distinguished analysts of our time" and as "an outstanding mathematician of worldwide reputation", who strongly influenced the development of mathematical analysis and the theory of partial differential equations.

<span class="mw-page-title-main">Leon Simon</span> Australian mathematician (born 1945)

Leon Melvyn Simon, born in 1945, is a Leroy P. Steele Prize and Bôcher Prize-winning mathematician, known for deep contributions to the fields of geometric analysis, geometric measure theory, and partial differential equations. He is currently Professor Emeritus in the Mathematics Department at Stanford University.

Clifford analysis, using Clifford algebras named after William Kingdon Clifford, is the study of Dirac operators, and Dirac type operators in analysis and geometry, together with their applications. Examples of Dirac type operators include, but are not limited to, the Hodge–Dirac operator, on a Riemannian manifold, the Dirac operator in euclidean space and its inverse on and their conformal equivalents on the sphere, the Laplacian in euclidean n-space and the Atiyah–Singer–Dirac operator on a spin manifold, Rarita–Schwinger/Stein–Weiss type operators, conformal Laplacians, spinorial Laplacians and Dirac operators on SpinC manifolds, systems of Dirac operators, the Paneitz operator, Dirac operators on hyperbolic space, the hyperbolic Laplacian and Weinstein equations.

<span class="mw-page-title-main">Vladimir Miklyukov</span>

Vladimir Michaelovich Miklyukov was a Russian educator in mathematics, and head of the Superslow Process workgroup based at Volgograd State University.

Michael Eugene Taylor is an American mathematician, working in partial differential equations.

In mathematics, global analysis, also called analysis on manifolds, is the study of the global and topological properties of differential equations on manifolds and vector bundles. Global analysis uses techniques in infinite-dimensional manifold theory and topological spaces of mappings to classify behaviors of differential equations, particularly nonlinear differential equations. These spaces can include singularities and hence catastrophe theory is a part of global analysis. Optimization problems, such as finding geodesics on Riemannian manifolds, can be solved using differential equations so that the calculus of variations overlaps with global analysis. Global analysis finds application in physics in the study of dynamical systems and topological quantum field theory.

References

  1. Birth year from SUDOC catalog data, retrieved 2019-09-07
  2. 1 2 3 "Dorina Mitrea Hired as New Chair of Baylor Mathematics", Baylor Mathematics News, August 8, 2019
  3. 1 2 Curriculum vitae (PDF), retrieved 2019-09-07[ permanent dead link ]
  4. Dorina Mitrea at the Mathematics Genealogy Project
  5. Faculty honors, University of Missouri Department of Mathematics, retrieved 2019-09-07
  6. Eichhorn, Jürgen (2002), "Review of Layer Potentials, the Hodge Laplacian, and Global Boundary Problems in Nonsmooth Riemannian Manifolds", Mathematical Reviews, doi:10.1090/memo/0713, MR   1809655
  7. Nicola, Fabio (2013), "Review of Distributions, Partial Differential Equations, and Harmonic Analysis", Mathematical Reviews, Universitext, doi:10.1007/978-1-4614-8208-6, ISBN   978-1-4614-8207-9, MR   3114783
  8. Reviews of Groupoid Metrization Theory:
  9. Schick, Thomas (2016), "Review of The Hodge-Laplacian", Mathematical Reviews, doi:10.1515/9783110484380, ISBN   9783110484380, MR   3586566