ECOSTRESS (Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station) is an ongoing scientific experiment in which a radiometer mounted on the International Space Station (ISS) measures the temperature of plants growing in specific locations on Earth over the course of a solar year. These measurements give scientists insight into the effects of events like heat waves and droughts on crops. [1]
The instrument that collects this data is a multispectral thermal infrared radiometer. It measures temperatures on the surface of the Earth, rather than surface air temperature. [2] [3] Dr. Simon Hook [4] is the principal investigator of the ECOSTRESS mission and Dr. Joshua Fisher [5] is the Science lead; both are located at NASA's Jet Propulsion Laboratory (JPL). [3] ECOSTRESS data is archived at the Land Processes Distributed Active Archive Center (LP DAAC), [6] which is a data center managed by the United States Geological Survey (USGS). ECOSTRESS data is discoverable through various platforms [7] including through LP DAAC's AppEEARS (Application for Extracting and Exploring Analysis Ready Samples) [8] tool, which allows users to quickly subset and reproject data into a geographic lat/lot format. The data collected is also published via the open-access TERN Data Discovery Portal in Australia. [3]
The ECOSTRESS radiometer was built at JPL and consisted of 5 spectral bands in the thermal infrared (8-12 micron) and 1 band in the shortwave infrared, which is used for geolocation. [9] ECOSTRESS was delivered to the ISS by the SpaceX Dragon after a launch out of Cape Canaveral, Florida on 29 June 2018 [10] The Dragon arrived at the space station on 3 July 2018. [10] The radiometer was mounted on the station's Kibo module. The radiometer constituted about 550 kg (1,210 lb) of the 2,700 kg (6,000 lb) of cargo on board the Dragon. [11] Other cargo included spare parts for the Canadarm2 robotic arm, as well as other equipment and supplies. [1]
The high-resolution images have a pixel size of 70 meters by 38 meters (225 feet by 125 feet). [12]
The key science questions that ECOSTRESS is addressing include:
Image data helps capture and quantify the temperature differences between man-made and natural surfaces. JPL released a report highlighting a 10 June 2022 record high air temperature in Las Vegas, NV of 43 C (109 F) and the corresponding ground temperatures. For instance, asphalt surfaces reached 50 C (122 F), while suburban neighborhood surfaces reached 42 C (108 F) and green spaces measured 37 C (99 F).
The original ECOSTRESS Science Team included Dr. Glynn Hulley (JPL) [13] and scientists at the U.S. Department of Agriculture, including Dr. Andrew French [14] and Dr. Martha Anderson. [15] Other science team members include Drs. Eric Wood (Princeton), [16] Rick Allen (University of Idaho), [17] and Chris Hain (NASA Marshall Space Flight Center). [18] ECOSTRESS is the first Earth Venture mission to establish an Early Adopters Program, which provided its members with early access to provisional data and opportunities to collaborate with other ECOSTRESS users in a Slack channel. As of August 2019, the Early Adopters Program has transitioned to the ECOSTRESS Community of Practice, with over 250 members.
Science data products produced by ECOSTRESS include:
Data Product | Description | Pixel Size* | Temporal Resolution (days) |
---|---|---|---|
ECO1BRAD.001 | Radiance | 70 x 70 | Over continental United States and target areas**, every 1–7 days |
ECO1BATT.001 | Attitude and Ephemeris | ||
ECO1BMAPRAD.001 | Projected Radiance | ||
ECO1BGEO.001 | Geolocation | ||
ECO2LSTE.001 | Land Surface Temperature and Emissivity | ||
ECO2CLD.001 | Cloud mask | ||
ECO3ETPTJPL.001 | Evapotranspiration (PT-JPL model enhanced) | ||
ECO3ANCQA.001 | Ancillary Data Quality | ||
ECO3ETALEXIU.001 | Evapotranspiration (ALEXI model enhanced) | 30 x 30*** | |
ECO4ESIPTJPL.001 | Evaporative Stress Index derived from L3_ET_PT-JPL | 70 x 70 | |
ECO4ESIALEXIU.001 | Evaporative Stress Index derived from L3_ET_ALEXI | 30 x 30*** | |
ECO4WUE.001 | Water Use Efficiency | 70 x 70 | |
* More accurately referred to as pixel spacing resolution (m) because of dependencies on ISS altitude, which varies ** For more info, please visit ECOSTRESS Gmap to see where data has been acquired |
Jet Propulsion Laboratory (JPL) is a federally funded research and development center in Pasadena, California, United States. Founded in 1936 by Caltech researchers, the laboratory is now owned and sponsored by the National Aeronautics and Space Administration (NASA) and administered and managed by the California Institute of Technology.
2001 Mars Odyssey is a robotic spacecraft orbiting the planet Mars. The project was developed by NASA, and contracted out to Lockheed Martin, with an expected cost for the entire mission of US$297 million. Its mission is to use spectrometers and a thermal imager to detect evidence of past or present water and ice, as well as study the planet's geology and radiation environment. It is hoped that the data Odyssey obtains will help answer the question of whether life existed on Mars and create a risk-assessment of the radiation that future astronauts on Mars might experience. It also acts as a relay for communications between the Curiosity rover, and previously the Mars Exploration Rovers and Phoenix lander, to Earth. The mission was named as a tribute to Arthur C. Clarke, evoking the name of his and Stanley Kubrick's 1968 film 2001: A Space Odyssey.
The Mariner program was conducted by the American space agency NASA to explore other planets. Between 1962 and late 1973, NASA's Jet Propulsion Laboratory (JPL) designed and built 10 robotic interplanetary probes named Mariner to explore the inner Solar System - visiting the planets Venus, Mars and Mercury for the first time, and returning to Venus and Mars for additional close observations.
Mariner 2, an American space probe to Venus, was the first robotic space probe to report successfully from a planetary encounter. The first successful spacecraft in the NASA Mariner program, it was a simplified version of the Block I spacecraft of the Ranger program and an exact copy of Mariner 1. The missions of the Mariner 1 and 2 spacecraft are sometimes known as the Mariner R missions. Original plans called for the probes to be launched on the Atlas-Centaur, but serious developmental problems with that vehicle forced a switch to the much smaller Agena B second stage. As such, the design of the Mariner R vehicles was greatly simplified. Far less instrumentation was carried than on the Soviet Venera probes of this period—for example, forgoing a TV camera—as the Atlas-Agena B had only half as much lift capacity as the Soviet 8K78 booster. The Mariner 2 spacecraft was launched from Cape Canaveral on August 27, 1962, and passed as close as 34,773 kilometers (21,607 mi) to Venus on December 14, 1962.
Mariner 6 and Mariner 7 were two uncrewed NASA robotic spacecraft that completed the first dual mission to Mars in 1969 as part of NASA's wider Mariner program. Mariner 6 was launched from Launch Complex 36B at Cape Canaveral Air Force Station and Mariner 7 from Launch Complex 36A. The two craft flew over the equator and south polar regions, analyzing the atmosphere and the surface with remote sensors, and recording and relaying hundreds of pictures. The mission's goals were to study the surface and atmosphere of Mars during close flybys, in order to establish the basis for future investigations, particularly those relevant to the search for extraterrestrial life, and to demonstrate and develop technologies required for future Mars missions. Mariner 6 also had the objective of providing experience and data which would be useful in programming the Mariner 7 encounter five days later.
Cassini–Huygens, commonly called Cassini, was a space-research mission by NASA, the European Space Agency (ESA), and the Italian Space Agency (ASI) to send a space probe to study the planet Saturn and its system, including its rings and natural satellites. The Flagship-class robotic spacecraft comprised both NASA's Cassini space probe and ESA's Huygens lander, which landed on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit, where it stayed from 2004 to 2017. The two craft took their names from the astronomers Giovanni Cassini and Christiaan Huygens.
The Upper Atmosphere Research Satellite (UARS) was a NASA-operated orbital observatory whose mission was to study the Earth's atmosphere, particularly the protective ozone layer. The 5,900-kilogram (13,000 lb) satellite was deployed from Space Shuttle Discovery during the STS-48 mission on 15 September 1991. It entered Earth orbit at an operational altitude of 600 kilometers (370 mi), with an orbital inclination of 57 degrees.
Seasat was the first Earth-orbiting satellite designed for remote sensing of the Earth's oceans and had on board one of the first spaceborne synthetic-aperture radar (SAR). The mission was designed to demonstrate the feasibility of global satellite monitoring of oceanographic phenomena and to help determine the requirements for an operational ocean remote sensing satellite system. Specific objectives were to collect data on sea-surface winds, sea-surface temperatures, wave heights, internal waves, atmospheric water, sea ice features and ocean topography. Seasat was managed by NASA's Jet Propulsion Laboratory and was launched on 27 June 1978 into a nearly circular 800 km (500 mi) orbit with an inclination of 108°. Seasat operated until 10 October 1978 (UTC), when a massive short circuit in the Agena-D bus electrical system ended the mission.
The Active Cavity Radiometer Irradiance Monitor Satellite, or ACRIMSAT was a satellite carrying the ACRIM-3 instrument. It was one of the 21 observational components of NASA's Earth Observing System program. The instrument followed upon the ACRIM-1 and ACRIM-2 instruments that were launched on multi-instrument satellite platforms. ACRIMSAT was launched on 20 December 1999 from Vandenberg Air Force Base as the secondary payload on the Taurus launch vehicle that launched KOMPSAT. It was placed into a high inclination of 98.30°, at 720 km. Sun-synchronous orbit from which the ACRIM-3 instrument monitored total solar irradiance (TSI). Contact with the satellite was lost on 14 December 2013.
The atmospheric infrared sounder (AIRS) is one of six instruments flying on board NASA's Aqua satellite, launched on May 4, 2002. The instrument is designed to support climate research and improve weather forecasting.
Aquarius was a NASA instrument aboard the Argentine SAC-D spacecraft. Its mission was to measure global sea surface salinity to better predict future climate conditions.
Soil Moisture Active Passive (SMAP) is a NASA environmental monitoring satellite that measures soil moisture across the planet. It is designed to collect a global 'snapshot' of soil moisture every 2 to 3 days. With this frequency, changes from specific storms can be measured while also assessing impacts across seasons of the year. SMAP was launched on 31 January 2015. It was one of the first Earth observation satellites developed by NASA in response to the National Research Council's Decadal Survey.
ADEOS I was an Earth observation satellite launched by NASDA in 1996. The mission's Japanese name, Midori means "green". The mission ended in July 1997 after the satellite sustained structural damage to the solar panel. Its successor, ADEOS II, was launched in 2002. Like the first mission, it ended after less than a year, also following solar panel malfunctions.
The Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission was a robotic lander designed to study the deep interior of the planet Mars. It was manufactured by Lockheed Martin Space, was managed by NASA's Jet Propulsion Laboratory (JPL), and two of its three scientific instruments were built by European agencies. The mission launched on 5 May 2018 at 11:05:01 UTC aboard an Atlas V-401 launch vehicle and successfully landed at Elysium Planitia on Mars on 26 November 2018 at 19:52:59 UTC. InSight was active on Mars for 1440 sols.
NEO Surveyor, formerly called Near-Earth Object Camera (NEOCam), then NEO Surveillance Mission, is a planned space-based infrared telescope designed to survey the Solar System for potentially hazardous asteroids.
Anita Sengupta is an American aerospace engineer. She is a graduate in aerospace and mechanical engineering of the Viterbi School of Engineering at the University of Southern California. She was the lead systems engineer of the team that developed the parachute system that was deployed during the landing of Mars Science Laboratory Curiosity. She was subsequently the project manager of the Cold Atom Laboratory at the Jet Propulsion Laboratory at Caltech. She was then the Senior Vice President of Systems Engineering at Virgin Hyperloop One. She is currently Chief Product Officer at Airspace Experience Technologies (ASX).
Lunar Flashlight is a low-cost CubeSat lunar orbiter mission to explore, locate, and estimate size and composition of water ice deposits on the Moon for future exploitation by robots or humans.
The Heat Flow and Physical Properties Package (HP3) is a science payload on board the InSight lander that features instruments to study the heat flow and other thermal properties of Mars. One of the instruments, a burrowing probe nicknamed "the mole", was designed to penetrate 5 m (16 ft) below Mars' surface. In March 2019, the mole burrowed a few centimeters, but then became unable to make progress due to various factors. In the following year further attempts were made to resolve the issues, with little net progress. On January 14, 2021, it was announced that efforts to drill into the martian surface using the device had been terminated.
Eni G. Njoku is a Nigerian-American scientist specializing in microwave remote sensing. He worked at the Jet Propulsion Laboratory (JPL), California Institute of Technology, where he was responsible for developing techniques for sea surface temperature and soil moisture remote sensing using microwave radiometers. He produced the first microwave-derived sea surface temperature maps from space, and developed the first application of deployable mesh antennas for satellite Earth observation. From 2008-2013, he served as project scientist of NASA's first soil moisture mission, the Soil Moisture Active Passive (SMAP) mission, launched in 2015.
Lunar Trailblazer is a planned small lunar orbiter, part of NASA's SIMPLEx program, that will detect and map water on the lunar surface to determine how its form, abundance, and location relate to geology. Its mission is to aid in the understanding of lunar water and the Moon's water cycle. Lunar Trailblazer is currently slated to launch in early 2024 as a secondary payload on the IM-2 mission. The Principal Investigator (PI) of the mission is Bethany Ehlmann, a professor at Caltech.