Edge-of-the-wedge theorem

Last updated

In mathematics, Bogoliubov's edge-of-the-wedge theorem implies that holomorphic functions on two "wedges" with an "edge" in common are analytic continuations of each other provided they both give the same continuous function on the edge. It is used in quantum field theory to construct the analytic continuation of Wightman functions. The formulation and the first proof of the theorem were presented [1] [2] by Nikolay Bogoliubov at the International Conference on Theoretical Physics, Seattle, USA (September, 1956) and also published in the book Problems in the Theory of Dispersion Relations. [3] Further proofs and generalizations of the theorem were given by Res Jost and Harry Lehmann (1957), [4] Freeman Dyson (1958), H. Epstein (1960), and by other researchers.

Contents

The one-dimensional case

Continuous boundary values

In one dimension, a simple case of the edge-of-the-wedge theorem can be stated as follows.

In this example, the two wedges are the upper half-plane and the lower half plane, and their common edge is the real axis. This result can be proved from Morera's theorem. Indeed, a function is holomorphic provided its integral round any contour vanishes; a contour which crosses the real axis can be broken up into contours in the upper and lower half-planes and the integral round these vanishes by hypothesis. [5] [6]

Distributional boundary values on a circle

The more general case is phrased in terms of distributions. [7] [8] This is technically simplest in the case where the common boundary is the unit circle in the complex plane. In that case holomorphic functions f, g in the regions and have Laurent expansions

absolutely convergent in the same regions and have distributional boundary values given by the formal Fourier series

Their distributional boundary values are equal if for all n. It is then elementary that the common Laurent series converges absolutely in the whole region .

Distributional boundary values on an interval

In general given an open interval on the real axis and holomorphic functions defined in and satisfying

for some non-negative integer N, the boundary values of can be defined as distributions on the real axis by the formulas [9] [8]

Existence can be proved by noting that, under the hypothesis, is the -th complex derivative of a holomorphic function which extends to a continuous function on the boundary. If f is defined as above and below the real axis and F is the distribution defined on the rectangle by the formula

then F equals off the real axis and the distribution is induced by the distribution on the real axis.

In particular if the hypotheses of the edge-of-the-wedge theorem apply, i.e. , then

By elliptic regularity it then follows that the function F is holomorphic in .

In this case elliptic regularity can be deduced directly from the fact that is known to provide a fundamental solution for the Cauchy–Riemann operator . [10]

Using the Cayley transform between the circle and the real line, this argument can be rephrased in a standard way in terms of Fourier series and Sobolev spaces on the circle. Indeed, let and be holomorphic functions defined exterior and interior to some arc on the unit circle such that locally they have radial limits in some Sobolev space, Then, letting

the equations

can be solved locally in such a way that the radial limits of G and F tend locally to the same function in a higher Sobolev space. For k large enough, this convergence is uniform by the Sobolev embedding theorem. By the argument for continuous functions, F and G therefore patch to give a holomorphic function near the arc and hence so do f and g.

The general case

A wedge is a product of a cone with some set.

Let be an open cone in the real vector space , with vertex at the origin. Let E be an open subset of , called the edge. Write W for the wedge in the complex vector space , and write W' for the opposite wedge . Then the two wedges W and W' meet at the edge E, where we identify E with the product of E with the tip of the cone.

The conditions for the theorem to be true can be weakened. It is not necessary to assume that f is defined on the whole of the wedges: it is enough to assume that it is defined near the edge. It is also not necessary to assume that f is defined or continuous on the edge: it is sufficient to assume that the functions defined on either of the wedges have the same distributional boundary values on the edge.

Application to quantum field theory

In quantum field theory the Wightman distributions are boundary values of Wightman functions W(z1, ..., zn) depending on variables zi in the complexification of Minkowski spacetime. They are defined and holomorphic in the wedge where the imaginary part of each zizi1 lies in the open positive timelike cone. By permuting the variables we get n! different Wightman functions defined in n! different wedges. By applying the edge-of-the-wedge theorem (with the edge given by the set of totally spacelike points) one can deduce that the Wightman functions are all analytic continuations of the same holomorphic function, defined on a connected region containing all n! wedges. (The equality of the boundary values on the edge that we need to apply the edge-of-the-wedge theorem follows from the locality axiom of quantum field theory.)

Connection with hyperfunctions

The edge-of-the-wedge theorem has a natural interpretation in the language of hyperfunctions. A hyperfunction is roughly a sum of boundary values of holomorphic functions, and can also be thought of as something like a "distribution of infinite order". The analytic wave front set of a hyperfunction at each point is a cone in the cotangent space of that point, and can be thought of as describing the directions in which the singularity at that point is moving.

In the edge-of-the-wedge theorem, we have a distribution (or hyperfunction) f on the edge, given as the boundary values of two holomorphic functions on the two wedges. If a hyperfunction is the boundary value of a holomorphic function on a wedge, then its analytic wave front set lies in the dual of the corresponding cone. So the analytic wave front set of f lies in the duals of two opposite cones. But the intersection of these duals is empty, so the analytic wave front set of f is empty, which implies that f is analytic. This is the edge-of-the-wedge theorem.

In the theory of hyperfunctions there is an extension of the edge-of-the-wedge theorem to the case when there are several wedges instead of two, called Martineau's edge-of-the-wedge theorem. See the book by Hörmander for details.

Notes

  1. Vladimirov, V. S. (1966), Methods of the Theory of Functions of Many Complex Variables, Cambridge, Mass.: M.I.T. Press
  2. V. S. Vladimirov, V. V. Zharinov, A. G. Sergeev (1994). "Bogolyubov's “edge of the wedge” theorem, its development and applications", Russian Math. Surveys, 49(5): 51—65.
  3. Bogoliubov, N. N.; Medvedev, B. V.; Polivanov, M. K. (1958), Problems in the Theory of Dispersion Relations, Princeton: Institute for Advanced Study Press
  4. Jost, R.; Lehmann, H. (1957). "Integral-Darstellung kausaler Kommutatoren". Nuovo Cimento. 5 (6): 1598–1610. Bibcode:1957NCim....5.1598J. doi:10.1007/BF02856049. S2CID   123500326.
  5. Rudin 1971
  6. Streater & Wightman 2000
  7. Hörmander 1990 , pp. 63–65, 343–344
  8. 1 2 Berenstein & Gay 1991 , pp. 256–265
  9. Hörmander 1990 , pp. 63–66
  10. Hörmander 1990 , pp. 63, 81, 110

Related Research Articles

<span class="mw-page-title-main">Complex analysis</span> Branch of mathematics studying functions of a complex variable

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, and applied mathematics, as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.

<span class="mw-page-title-main">Riemann mapping theorem</span>

In complex analysis, the Riemann mapping theorem states that if is a non-empty simply connected open subset of the complex number plane which is not all of , then there exists a biholomorphic mapping from onto the open unit disk

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Harmonic function</span> Functions in mathematics

In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function where U is an open subset of that satisfies Laplace's equation, that is,

In mathematics, a power series is an infinite series of the form

<span class="mw-page-title-main">Analytic function</span> Type of function in mathematics

In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex analytic functions exhibit properties that do not generally hold for real analytic functions. A function is analytic if and only if its Taylor series about converges to the function in some neighborhood for every in its domain. It is important to note that it is a neighborhood and not just at some point , since every differentiable function has at least a tangent line at every point, which is its Taylor series of order 1. So just having a polynomial expansion at singular points is not enough, and the Taylor series must also converge to the function on points adjacent to to be considered an analytic function. As a counterexample see the Weierstrass function or the Fabius function.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

In complex analysis, the Hardy spacesHp are certain spaces of holomorphic functions on the unit disk or upper half plane. They were introduced by Frigyes Riesz, who named them after G. H. Hardy, because of the paper. In real analysis Hardy spaces are certain spaces of distributions on the real line, which are boundary values of the holomorphic functions of the complex Hardy spaces, and are related to the Lp spaces of functional analysis. For 1 ≤ p < ∞ these real Hardy spaces Hp are certain subsets of Lp, while for p < 1 the Lp spaces have some undesirable properties, and the Hardy spaces are much better behaved.

The theory of functions of several complex variables is the branch of mathematics dealing with functions defined on the complex coordinate space, that is, n-tuples of complex numbers. The name of the field dealing with the properties of these functions is called several complex variables, which the Mathematics Subject Classification has as a top-level heading.

<span class="mw-page-title-main">Morera's theorem</span> Integral criterion for holomorphy

In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic.

In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

In mathematics, a Paley–Wiener theorem is any theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform. The theorem is named for Raymond Paley (1907–1933) and Norbert Wiener (1894–1964). The original theorems did not use the language of distributions, and instead applied to square-integrable functions. The first such theorem using distributions was due to Laurent Schwartz. These theorems heavily rely on the triangle inequality.

In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after Karl Stein. A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry.

In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese,, building upon earlier work by Laurent Schwartz, Grothendieck and others.

In mathematics, plurisubharmonic functions form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions plurisubharmonic functions can be defined in full generality on complex analytic spaces.

In mathematics, in particular in mathematical analysis, the Whitney extension theorem is a partial converse to Taylor's theorem. Roughly speaking, the theorem asserts that if A is a closed subset of a Euclidean space, then it is possible to extend a given function of A in such a way as to have prescribed derivatives at the points of A. It is a result of Hassler Whitney.

In mathematics, Riemann–Hilbert problems, named after Bernhard Riemann and David Hilbert, are a class of problems that arise in the study of differential equations in the complex plane. Several existence theorems for Riemann–Hilbert problems have been produced by Mark Krein, Israel Gohberg and others.

In mathematics, the FBI transform or Fourier–Bros–Iagolnitzer transform is a generalization of the Fourier transform developed by the French mathematical physicists Jacques Bros and Daniel Iagolnitzer in order to characterise the local analyticity of functions on Rn. The transform provides an alternative approach to analytic wave front sets of distributions, developed independently by the Japanese mathematicians Mikio Sato, Masaki Kashiwara and Takahiro Kawai in their approach to microlocal analysis. It can also be used to prove the analyticity of solutions of analytic elliptic partial differential equations as well as a version of the classical uniqueness theorem, strengthening the Cauchy–Kowalevski theorem, due to the Swedish mathematician Erik Albert Holmgren (1872–1943).

Algebraic analysis is an area of mathematics that deals with systems of linear partial differential equations by using sheaf theory and complex analysis to study properties and generalizations of functions such as hyperfunctions and microfunctions. Semantically, it is the application of algebraic operations on analytic quantities. As a research programme, it was started by the Japanese mathematician Mikio Sato in 1959. This can be seen as an algebraic geometrization of analysis. It derives its meaning from the fact that the differential operator is right-invertible in several function spaces.

In mathematics, a tube domain is a generalization of the notion of a vertical strip in the complex plane to several complex variables. A strip can be thought of as the collection of complex numbers whose real part lie in a given subset of the real line and whose imaginary part is unconstrained; likewise, a tube is the set of complex vectors whose real part is in some given collection of real vectors, and whose imaginary part is unconstrained.

References

Further reading

The connection with hyperfunctions is described in:

For the application of the edge-of-the-wedge theorem to quantum field theory see: