Eftilagimod alpha

Last updated
Eftilagimod alpha
Clinical data
Trade names ImmuFact
Other namesEfti, IMP321
Legal status
Legal status
  • Investigational
Identifiers
CAS Number
UNII

Eftilagimod alpha (INN; [1] development code IMP321 or efti) is a large-molecule cancer drug being developed by the clinical-stage biotechnology company Immutep. Efti is a soluble version of the immune checkpoint molecule LAG-3. It is an APC Activator used to increase an immune response to tumors, and is administered by subcutaneous injection. Efti has three intended clinical settings:

Contents

Eftilagimod alpha is in Phase II clinical testing. Currently, the main indications for the drug are metastatic breast cancer, non-small cell lung cancer (NSCLC), and head and neck squamous cell carcinoma (HNSCC).

Background

Eftilagimod alpha ("efti" in short) is a soluble LAG-3 fusion protein that activates antigen-presenting cells. It is a 160 kDa protein consisting of the four extracellular domains of LAG-3 fused to the Fc region of an IgG1(LAG-3Ig). Efti binds preferentially to a subset of MHC class II molecules that are enriched in lipid rafts and/or composed of stable peptide-MHC II (pMHCII) complexes. On T cells, membrane-anchored LAG-3 is an inhibitory receptor downregulating T-cell receptor (TCR) signaling. Efti – as a soluble LAG-3 protein – is an MHC class II agonist and therefore a dendritic-cell activator, causing increased antigen presentation to cytotoxic (CD8+) T cells. In the absence of antigen presentation via MHC class II molecules, efti reactivates dormant antigen-experienced memory T cells, allowing them to recognize their antigen targets at the tumor site.[ citation needed ]

History

Soluble LAG-3 was first established as a dendritic-cell activator in the late 1990s. Frédéric Triebel, who discovered LAG-3 in 1990, [2] worked through the 1990s at his laboratory at the Institut Gustave Roussy, in collaboration with INSERM and Merck Serono, to elucidate LAG-3’s role in the adaptive immune system. Triebel et al. had successfully produced a soluble LAG-3Ig fusion protein by 1995 and subsequently discovered its anti-cancer properties in vivo in different mouse tumor models in 1990. Shortly thereafter in 2001, Triebel formed a biotechnology company called Immutep SA in order to develop the therapeutic potential of LAG-3. Immutep was acquired by Prima BioMed in 2014 and as a result Eftilagimod alpha became Prima BioMed's lead compound. In 2017, Prima BioMed changed its name to Immutep to reflect its developmental focus on LAG-3 therapeutics.[ citation needed ]

Clinical Trials

Ongoing Clinical Studies

As of February 2020, three clinical studies are ongoing:

Metastatic breast carcinoma (HER2 HR+)

In the AIPAC study efti is administered in combination with paclitaxel to women with HER2 metastatic breast cancer whose disease progressed after endocrine therapy. This Phase IIb trial is a randomized, double-blind, placebo-controlled study aiming to enroll 241 patients. It had an open run-in phase with 15 patients being treated and the results were published at the 2018 ASCO annual meeting. The study is ongoing and is expected to show results in the first half of 2020.[ citation needed ]

Solid Tumors

The INSIGHT Phase I study is investigating the feasibility and safety of different routes of drug delivery (e.g. intra-tumoral, intra-peritoneal, and subcutaneous).

Non-small Cell Lung Cancer (NSCLC) and Head and Neck Squamous Cell Carcinoma (HNSCC)

In the TACTI-002 Phase II study, efti is administered in combination with pembrolizumab in three distinct and independent cancer indications (following a basket trial design):

  1. First-line metastatic NSCLC
  2. Second-line metastatic NSCLC in patients refractory to PD-L1 or PD-1 therapies such as pembrolizumab, nivolumab, avelumab)
  3. Second-line HNSCC

In each of the three indications, a first cohort of patients is treated and only if a certain pre-determined number of tumor responses is reached may a second cohort of patients be enrolled. This follows the Simons two-stage design. At the 2019 SITC meeting, Immutep released interim results from their first-line metastatic NSCLC trial before announcing that stage 2 of the trial had officially commenced. In early 2020, Immutep also announced in a press release the continuation of their stage 2 trial in HNSCC.

Completed Clinical Trials

Phase I study in melanoma, 2016-2019

The TACTI-mel Phase I study investigated the safety and potential synergies of efti in combination with the programmed cell death (PD-1) antibody pembrolizumab in unresectable or metastatic melanoma. The trial is noted as complete on clinicaltrials.gov; final results were published at the 2019 World Immunotherapy Congress in Basel, Switzerland. No major safety concerns and preliminary safety results were reported.

Phase I study in pancreatic cancer, 2009-2012

In April 2009, Immutep announced its involvement in a Phase I study in pancreatic cancer conducted at Washington University School of Medicine in St. Louis, Missouri. This 18-patient study [3] evaluated for safety the combination of efti with gemcitabine, a chemotherapy drug, at doses up to 2 mg. The combination was found to be safe, however no significant differences were observed when comparing pre- and post-treatment levels of monocytes, dendritic cells, and T cells, likely due to sub-optimal dosing. The results of the study were reported online in Investigational New Drugs in August 2012.

Phase IIa study in metastatic breast cancer, 2006-2010

A 30-patient Phase IIa open-label study in HER2-negative metastatic breast cancer [4] has suggested that efti works as a chemo-immunotherapeutic in breast cancer, whereby chemotherapy creates tumor debris (circulating tumor antigen), and efti increases activation of antigen-presenting cells (APCs) as they take up that debris. This trial arose in part from the findings of a June 2005 online paper in Cancer Letters by two researchers at the Centre René Huguenin in Saint-Cloud near Paris who had collaborated with Frédéric Triebel. This paper demonstrated that the level of serum soluble LAG-3 correlated with improved survival in breast cancer patients whose tumors were estrogen or progesterone receptor-positive. In the study, patients on weekly low-dose paclitaxel (chemotherapy) were administered ascending subcutaneous doses of efti on days 2 and 16 of a 28-day cycle of paclitaxel over six cycles. The maximum efti dose was 6.25 mg. Paclitaxel was given on days 1, 8, and 15, meaning that patients were administered efti the day after paclitaxel had killed some tumor cells leading to antigenic tumor debris to be processed by dendritic cells for antigen presentation to CD8+ T cells. There were two notable outcomes to this study:

  • Response rate. At the six-month endpoint, 90% of patients had experienced a clinical benefit. The overall response rate was 50% based on RECIST criteria, which compared favorably with the 25% response rate observed in patients on paclitaxel monotherapy in the ECOG2100 study. The lead investigators of the chemo-immunotherapy combination trial also noted relevant differences in the two studies' patient groups: the ECOG2100 patients were on average younger than in the chemo-immunotherapy study, and a significantly lower percentage had disease in three or more sites upon entry into the trial.
  • Increase in relevant cell numbers. There was a sustained increase in the number of monocytes, NK cells, and activated CD8+ T cells in the patients' blood samples when compared with baseline data, with the increase at the six-month mark having a statistical significance in each case. Also, the percentage of PBMCs represented by dendritic cells and terminally differentiated effector memory T cells increased, again with statistical significance.

The results of this study were reported in January 2010, and following an oral presentation at the ASCO Annual Meeting in June 2010 the results were published in July 2010 in the Journal of Translational Medicine. The study provided the basis of a new patent filing for Eftilagimod alpha.

Phase Ib study in renal cell carcinoma, 2005-2009

Immutep's first Phase I study of efti in cancer patients was an open-label study in 21 metastatic renal cell carcinoma patients, with the drug being used as a monotherapy. [5] These patients were known to be immunocompromised. The study, which began in late 2005, saw the patients administered ascending doses of efti (up to 30 mg per subcutaneous injection) fortnightly for six injections. The drug appeared to work at the two highest doses of 6 mg and 30 mg, with the primary outcomes among the eight patients who received these doses:

  • Activated T cells. The eight patients experienced sustained CD8+ T-cell activation (as measured by percentage of CD8+ T cells expressing CD69, CD38, HLA-DR) that was statistically significant compared to the lower doses (p=0.016). There was a greater percentage of effector-memory CD8+ T cells (CD45ROhi, CD45RA- and CD62L-), again, statistically significant compared to the lower doses (p=0.008). And there was an increase in the expression of co-stimulatory molecules CD27 and CD28 (CD27+CD28+, p=0.016; and CD27-CD28+, p=0.014).
  • Stable disease. 7 of the 8 patients dosed at 6 mg had stable disease at 3 months compared with only 3 of 11 at lower doses. This results had statistical significance (p=0.015).

The results were published in Clinical Cancer Research in September 2009.

Early proof-of-concept studies, 2005-2007

Immutep conducted two Phase I studies designed to evaluate the safety as well as immune response profile of efti in humans:

  • A March 2007 paper published in the Journal of Immune Based Therapies and Vaccines showed that efti could increase T-cell response potentiation in healthy subjects being administered the hepatitis B surface antigen HBsAg. This randomized and controlled study, conducted in Paris in 2005 [6] saw 40 healthy subjects immunized with 10 μg of HBsAg, and then given either saline (8 subjects) or ascending doses of efti up to 100 μg (32 subjects). An additional 8 subjects received a conventional Hepatitis B vaccine, the Engerix-B product of GlaxoSmithKline. Subjects administered efti had higher levels of HBsAg antibody in their blood as well as higher levels of antigen-specific T cells.
  • An April 2007 online paper in Vaccine showed a similar T cell response potentiation, this time with 60 healthy subjects being administered Novartis' Agrippal influenza vaccine. [7] This study, initiated in 2005 and completed in mid-2006, compared the influenza vaccine with the vaccine plus efti at doses up to 100 μg. For subjects that received efti there were higher levels of Th1-type CD4+ T cells in PBMC.

Pre-clinical work, 2000-2008

The years 2000 to 2008 saw a number of demonstrations of efti's effectiveness in vitro and in vivo:

Potential use in a liver cancer vaccine

In May 2015, Immutep (Prima Biomed at the time) announced a collaboration with NEC Corporation and Yamaguchi University in Japan in which Yamaguchi researchers would be combining efti with a peptide vaccine they had developed as a potential therapeutic for hepatocellular carcinoma.

Licensing in China

Immutep granted the rights to efti in mainland China, Hong Kong, Macao and Taiwan in October 2013 to Eddingpharm, a privately held Chinese pharmaceutical company. [8]

Manufacture

Efti is manufactured in CHO cells. Immutep worked with Henogen as the contracted manufacturing organization to provide efti for all trials until 2014. Immutep changed their contracted manufacturer to the Shangai-based WuXi PharmaTech, who began producing efti for all trials starting from 2016 onwards. 200-liter batches of efti are accepted for clinical trial use by multiple national agencies including FDA, PEI and MHRA. Recently, it was reported that upscaling to 2000-liter batches has initiated.

Related Research Articles

Immunotherapy or biological therapy is the treatment of disease by activating or suppressing the immune system. Immunotherapies designed to elicit or amplify an immune response are classified as activation immunotherapies, while immunotherapies that reduce or suppress are classified as suppression immunotherapies. Immunotherapy is under preliminary research for its potential to treat various forms of cancer.

A cancer vaccine, or oncovaccine, is a vaccine that either treats existing cancer or prevents development of cancer. Vaccines that treat existing cancer are known as therapeutic cancer vaccines or tumor antigen vaccines. Some of the vaccines are "autologous", being prepared from samples taken from the patient, and are specific to that patient.

<span class="mw-page-title-main">Cancer immunotherapy</span> Artificial stimulation of the immune system to treat cancer

Cancer immunotherapy (immuno-oncotherapy) is the stimulation of the immune system to treat cancer, improving the immune system's natural ability to fight the disease. It is an application of the fundamental research of cancer immunology (immuno-oncology) and a growing subspecialty of oncology.

<span class="mw-page-title-main">Antigen-presenting cell</span> Cell that displays antigen bound by MHC proteins on its surface

An antigen-presenting cell (APC) or accessory cell is a cell that displays an antigen bound by major histocompatibility complex (MHC) proteins on its surface; this process is known as antigen presentation. T cells may recognize these complexes using their T cell receptors (TCRs). APCs process antigens and present them to T cells.

Cross-presentation is the ability of certain professional antigen-presenting cells (mostly dendritic cells) to take up, process and present extracellular antigens with MHC class I molecules to CD8 T cells (cytotoxic T cells). Cross-priming, the result of this process, describes the stimulation of naive cytotoxic CD8+ T cells into activated cytotoxic CD8+ T cells. This process is necessary for immunity against most tumors and against viruses that infect dendritic cells and sabotage their presentation of virus antigens. Cross presentation is also required for the induction of cytotoxic immunity by vaccination with protein antigens, for example, tumour vaccination.

<span class="mw-page-title-main">Ipilimumab</span> Pharmaceutical drug

Ipilimumab, sold under the brand name Yervoy, is a monoclonal antibody medication that works to activate the immune system by targeting CTLA-4, a protein receptor that downregulates the immune system.

Northwest Biotherapeutics, Inc. is a development-stage American pharmaceutical company headquartered in Maryland that focuses on developing immunotherapies against different types of cancer. It was founded in 1996 by Alton L. Boynton.

<span class="mw-page-title-main">Cancer immunology</span> Study of the role of the immune system in cancer

Cancer immunology (immuno-oncology) is an interdisciplinary branch of biology and a sub-discipline of immunology that is concerned with understanding the role of the immune system in the progression and development of cancer; the most well known application is cancer immunotherapy, which utilises the immune system as a treatment for cancer. Cancer immunosurveillance and immunoediting are based on protection against development of tumors in animal systems and (ii) identification of targets for immune recognition of human cancer.

<span class="mw-page-title-main">Lymphocyte-activation gene 3</span> Protein-coding gene in the species Homo sapiens

Lymphocyte-activation gene 3, also known as LAG-3, is a protein which in humans is encoded by the LAG3 gene. LAG3, which was discovered in 1990 and was designated CD223 after the Seventh Human Leucocyte Differentiation Antigen Workshop in 2000, is a cell surface molecule with diverse biological effects on T cell function but overall has an immune inhibitory effect. It is an immune checkpoint receptor and as such is the target of various drug development programs by pharmaceutical companies seeking to develop new treatments for cancer and autoimmune disorders. In soluble form it is also being developed as a cancer drug in its own right.

Immunotransplant is a maneuver used to make vaccines more powerful. It refers to the process of infusing vaccine-primed T lymphocytes into lymphodepleted recipients for the purpose of enhancing the proliferation and function of those T cells and increasing immune protection induced by that vaccine.

Urelumab is a fully human, non‐ligand binding, CD137 agonist immunoglobulin‐γ 4 (IgG4) monoclonal antibody. It was developed utilizing Medarex's UltiMAb(R) technology by Bristol-Myers Squibb for the treatment of cancer and solid tumors. Urelumab promotes anti-tumor immunity, or an immune response against tumor cells, via CD137 activation. The application of Urelumab has been limited due to the fact that it can cause severe liver toxicity.

Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immune cells from the myeloid lineage.

PROSTVAC is a cancer immunotherapy candidate in clinical development by Bavarian Nordic for the treatment of all prostate cancer although clinical trials are focusing on more advanced cases of metastatic castration-resistant prostate cancer (mCRPC). PROSTVAC is a vaccine designed to enable the immune system to recognize and attack prostate cancer cells by triggering a specific and targeted T cell immune response to cancer cells that express the tumor-associated antigen prostate-specific antigen (PSA).

<span class="mw-page-title-main">Immutep</span>

Immutep Ltd is a biotechnology company working primarily in the field of cancer immunotherapy using the LAG3 immune control mechanism. The company was originally built on CVac, a therapeutic cancer vaccine. In late 2014 the privately held French immunotherapy company Immutep SA was purchased by Prima Biotech.

Frédéric Triebel is a French immunologist who is best known for his 1990 discovery of the LAG3 immune control mechanism. Triebel worked through the 1990s in a collaboration between Institut Gustave Roussy and Merck Serono to establish LAG-3's mechanism of action in T cells and dendritic cells. In 2001 he founded Immutep SA, a biotech company, to develop the therapeutic potential of LAG3. In 2014 this company was acquired by Prima BioMed, where Triebel remains Chief Scientific and Medical Officer.

GSK2831781 is a monoclonal antibody being developed by GlaxoSmithKline (GSK) for autoimmune diseases. The antibody targets the T cell activation marker LAG-3, which is mainly expressed in inflamed tissues. In GSK's March 2015 Product development pipeline document the antibody is listed under 'Immuno-inflammation' candidates. GSK2831781 entered a Phase I clinical trial in psoriasis early in 2015.

The dendritic cell-based cancer vaccine is an innovation in therapeutic strategy for cancer patients.

Cancer vaccine targeting CD4+ T cells is a type of vaccine used to treat existing cancer. Cancerous cells usually cannot be recognized by the human immune system, and therefore cannot be destroyed. Some researchers state that cancer can be treated by increasing the response of T cells, especially CD4+ T cells, to cancerous cells through cancer vaccine injection.

APC Activators are a type of immunotherapy which leverages antigen-presenting cells (APCs) to drive an adaptive immune response. APC Activators are agonists to APC surface-expressed ligands that, when bound, induce the maturation and activation of APCs. Professional antigen-presenting cells – including dendritic cells, macrophages, and B cells – serve an indispensable role in the adaptive immune response through their unique ability to phagocytose, digest, and present exogenous (circulating) antigens to T cells, facilitating antigen-specific immune responses.

Whole-cell vaccines are a type of vaccine that has been prepared in the laboratory from entire cells. Such vaccines simultaneously contain multiple antigens to activate the immune system. They induce antigen-specific T-cell responses.

References

  1. Recommended INN: List 78 (PDF). Vol. 31. WHO Drug Information. 2017.
  2. Triebel F, Jitsukawa S, Baixeras E, Roman-Roman S, Genevee C, Viegas-Pequignot E, Hercend T (May 1990). "LAG-3, a novel lymphocyte activation gene closely related to CD4". The Journal of Experimental Medicine. 171 (5): 1393–405. doi:10.1084/jem.171.5.1393. PMC   2187904 . PMID   1692078.
  3. Clinical trial number NCT00732082 for "Lag-3 and Gemcitabine for Treatment of Advanced Pancreas Cancer" at ClinicalTrials.gov
  4. Clinical trial number NCT00349934 for "IMP321 Plus First-line Paclitaxel in Metastatic Breast Carcinoma" at ClinicalTrials.gov
  5. Clinical trial number NCT00351949 for "IMP321 Phase 1 Trial in Metastatic Renal Cell Carcinoma (MRCC)" at ClinicalTrials.gov
  6. Clinical trial number NCT00354861 for "A Randomized Phase I Study of a Hepatitis B Antigen Combined With IMP321" at ClinicalTrials.gov
  7. Clinical trial number NCT00354263 for "Phase I Study of IMP321 Given Alone or as an Adjuvant to a Reference Flu Antigen" at ClinicalTrials.gov
  8. "Immutep and Eddingpharm sign agreement for development of ImmuFact IMP321 in China" (PDF) (Press release). October 8, 2013. Archived from the original (PDF) on February 13, 2015.