Electrical conductivity meter

Last updated
An electrical conductivity meter. Electrical conductivity meter.jpg
An electrical conductivity meter.

An electrical conductivity meter (EC meter) measures the electrical conductivity in a solution. [1] It has multiple applications in research and engineering, with common usage in hydroponics, aquaculture, aquaponics, and freshwater systems to monitor the amount of nutrients, salts or impurities in the water.

Contents

Principle

Common laboratory conductivity meters employ a potentiometric method and four electrodes. Often, the electrodes are cylindrical and arranged concentrically[ citation needed ]. The electrodes are usually made of platinum metal. An alternating current is applied to the outer pair of the electrodes. The potential between the inner pair is measured[ citation needed ]. Conductivity could in principle be determined using the distance between the electrodes and their surface area using Ohm's law but generally, for accuracy, a calibration is employed using electrolytes of well-known conductivity.

Industrial conductivity probes often employ an inductive method, which has the advantage that the fluid does not wet the electrical parts of the sensor. Here, two inductively-coupled coils are used. One is the driving coil producing a magnetic field and it is supplied with accurately-known voltage. The other forms a secondary coil of a transformer. The liquid passing through a channel in the sensor forms one turn in the secondary winding of the transformer. The induced current is the output of the sensor.

Another way is to use four-electrode conductivity sensors that are made from corrosion-resistant materials. A benefit of four-electrode conductivity sensors compared to inductive sensors is scaling compensation[ clarification needed ] and the ability to measure low (below 100 μS/cm) conductivities (a feature especially important when measuring near-100% hydrofluoric acid).

Temperature dependence

The conductivity of a solution is highly temperature dependent, so it is important either to use a temperature compensated instrument, or to calibrate the instrument at the same temperature as the solution being measured. Unlike metals, the conductivity of common electrolytes typically increases with increasing temperature.

Over a limited temperature range, the way temperature affects the conductivity of a solution can be modeled linearly using the following formula:

where

T is the temperature of the sample,
Tcal is the calibration temperature,
σT is the electrical conductivity at the temperature T,
σTcal is the electrical conductivity at the calibration temperature Tcal,
α is the temperature compensation gradient of the solution.

The temperature compensation gradient for most naturally occurring samples of water is about 2%/°C; however it can range between 1 and 3%/°C. The compensation gradients for some common water solutions are listed in the table below.

Aqueous solution
at 25 °C
Concentration
(mass percentage)
α (%/°C)
HCl 101.56
KCl 101.88
H2SO4 501.93
NaCl 102.14
HF 1.57.20
HNO3 3131

Conductivity measurement applications

Conductivity measurement is a versatile tool in process control. The measurement is simple and fast, and most advanced sensors require only a little maintenance. The measured conductivity reading can be used to make various assumptions on what is happening in the process. In some cases it is possible to develop a model to calculate the concentration of the liquid.

Concentration of pure liquids can be calculated when the conductivity and temperature is measured. The preset curves for various acids and bases are commercially available. For example, one can measure the concentration of high purity hydrofluoric acid using conductivity-based concentration measurement [Zhejiang Quhua Fluorchemical, China Valmet Concentration 3300]. A benefit of conductivity- and temperature-based concentration measurement is the superior speed of inline measurement compared to an on-line analyzer.

Conductivity-based concentration measurement has limitations. The concentration-conductivity dependence of most acids and bases is not linear. Conductivity-based measurement cannot determine on which side of the peak the measurement is, and therefore the measurement is only possible on a linear section of the curve.[ citation needed ] Kraft pulp mills use conductivity-based concentration measurement to control alkali additions to various stages of the cook. Conductivity measurement will not determine the specific amount of alkali components, but it is a good indication on the amount of effective alkali (NaOH + 12 Na2S as NaOH or Na2O) or active alkali (NaOH + Na2S as NaOH or Na2O) in the cooking liquor. The composition of the liquor varies between different stages of the cook. Therefore, it is necessary to develop a specific curve for each measurement point or to use commercially available products.

The high pressure and temperature of cooking process, combined with high concentration of alkali components, put a heavy strain on conductivity sensors that are installed in process. The scaling on the electrodes needs to be taken into account, otherwise the conductivity measurement drifts, requiring increased calibration and maintenance.

See also

Related Research Articles

pH Measure of the level of acidity or basicity of an aqueous solution

In chemistry, pH, also referred to as acidity or basicity, historically denotes "potential of hydrogen". It is a logarithmic scale used to specify the acidity or basicity of aqueous solutions. Acidic solutions are measured to have lower pH values than basic or alkaline solutions.

<span class="mw-page-title-main">Thermocouple</span> Electrical device for measuring temperature

A thermocouple, also known as a "thermoelectrical thermometer", is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the Seebeck effect, and this voltage can be interpreted to measure temperature. Thermocouples are widely used as temperature sensors.

An electrolyte is a medium containing ions that are electrically conductive through the movement of those ions, but not conducting electrons. This includes most soluble salts, acids, and bases dissolved in a polar solvent, such as water. Upon dissolving, the substance separates into cations and anions, which disperse uniformly throughout the solvent. Solid-state electrolytes also exist. In medicine and sometimes in chemistry, the term electrolyte refers to the substance that is dissolved.

Electrical resistivity is a fundamental specific property of a material that measures its electrical resistance or how strongly it resists electric current. A low resistivity indicates a material that readily allows electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m3 solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

<span class="mw-page-title-main">Magnetometer</span> Device that measures magnetism

A magnetometer is a device that measures magnetic field or magnetic dipole moment. Different types of magnetometers measure the direction, strength, or relative change of a magnetic field at a particular location. A compass is one such device, one that measures the direction of an ambient magnetic field, in this case, the Earth's magnetic field. Other magnetometers measure the magnetic dipole moment of a magnetic material such as a ferromagnet, for example by recording the effect of this magnetic dipole on the induced current in a coil.

pH meter Instrument that indicates acidity or alkalinity in water-based solutions, expressed as pH

A pH meter is a scientific instrument that measures the hydrogen-ion activity in water-based solutions, indicating its acidity or alkalinity expressed as pH. The pH meter measures the difference in electrical potential between a pH electrode and a reference electrode, and so the pH meter is sometimes referred to as a "potentiometric pH meter". The difference in electrical potential relates to the acidity or pH of the solution. Testing of pH via pH meters (pH-metry) is used in many applications ranging from laboratory experimentation to quality control.

<span class="mw-page-title-main">Nafion</span> Brand name for a chemical product

Nafion is a brand name for a sulfonated tetrafluoroethylene based fluoropolymer-copolymer synthesized in 1962 by Dr. Donald J. Connolly at the DuPont Experimental Station in Wilmington Delaware. Additional work on the polymer family was performed in the late 1960s by Dr. Walther Grot of DuPont. Nafion is a brand of the Chemours company. It is the first of a class of synthetic polymers with ionic properties that are called ionomers. Nafion's unique ionic properties are a result of incorporating perfluorovinyl ether groups terminated with sulfonate groups onto a tetrafluoroethylene (PTFE) backbone. Nafion has received a considerable amount of attention as a proton conductor for proton exchange membrane (PEM) fuel cells because of its excellent chemical and mechanical stability in the harsh conditions of this application.

A glass electrode is a type of ion-selective electrode made of a doped glass membrane that is sensitive to a specific ion. The most common application of ion-selective glass electrodes is for the measurement of pH. The pH electrode is an example of a glass electrode that is sensitive to hydrogen ions. Glass electrodes play an important part in the instrumentation for chemical analysis, and physicochemical studies. The voltage of the glass electrode, relative to some reference value, is sensitive to changes in the activity of a certain type of ions.

A silver chloride electrode is a type of reference electrode, commonly used in electrochemical measurements. For environmental reasons it has widely replaced the saturated calomel electrode. For example, it is usually the internal reference electrode in pH meters and it is often used as reference in reduction potential measurements. As an example of the latter, the silver chloride electrode is the most commonly used reference electrode for testing cathodic protection corrosion control systems in sea water environments.

<span class="mw-page-title-main">Thermometric titration</span>

A thermometric titration is one of a number of instrumental titration techniques where endpoints can be located accurately and precisely without a subjective interpretation on the part of the analyst as to their location. Enthalpy change is arguably the most fundamental and universal property of chemical reactions, so the observation of temperature change is a natural choice in monitoring their progress. It is not a new technique, with possibly the first recognizable thermometric titration method reported early in the 20th century. In spite of its attractive features, and in spite of the considerable research that has been conducted in the field and a large body of applications that have been developed; it has been until now an under-utilized technique in the critical area of industrial process and quality control. Automated potentiometric titration systems have pre-dominated in this area since the 1970s. With the advent of cheap computers able to handle the powerful thermometric titration software, development has now reached the stage where easy to use automated thermometric titration systems can in many cases offer a superior alternative to potentiometric titrimetry.

The molar conductivity of an electrolyte solution is defined as its conductivity divided by its molar concentration.

<span class="mw-page-title-main">Pirani gauge</span>

The Pirani gauge is a robust thermal conductivity gauge used for the measurement of the pressures in vacuum systems. It was invented in 1906 by Marcello Pirani.

<span class="mw-page-title-main">Heat flux sensor</span> Sensor which measures heat transfer

A heat flux sensor is a transducer that generates an electrical signal proportional to the total heat rate applied to the surface of the sensor. The measured heat rate is divided by the surface area of the sensor to determine the heat flux.

The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards to name but a few.

<span class="mw-page-title-main">Conductivity (electrolytic)</span> Measure of the ability of a solution containing electrolytes to conduct electricity

Conductivity or specific conductance of an electrolyte solution is a measure of its ability to conduct electricity. The SI unit of conductivity is siemens per meter (S/m).

Conductometry is a measurement of electrolytic conductivity to monitor a progress of chemical reaction. Conductometry has notable application in analytical chemistry, where conductometric titration is a standard technique. In usual analytical chemistry practice, the term conductometry is used as a synonym of conductometric titration while the term conductimetry is used to describe non-titrative applications. Conductometry is often applied to determine the total conductance of a solution or to analyze the end point of titrations that include ions.

<span class="mw-page-title-main">CTD (instrument)</span> Device to measure seawater properties

CTD stands for conductivity, temperature, and depth. A CTD instrument is an oceanography sonde used to measure the electrical conductivity, temperature, and pressure of seawater. The pressure is closely related to depth. Conductivity is used to determine salinity.

Ultrapure water (UPW), high-purity water or highly purified water (HPW) is water that has been purified to uncommonly stringent specifications. Ultrapure water is a term commonly used in manufacturing to emphasize the fact that the water is treated to the highest levels of purity for all contaminant types, including: organic and inorganic compounds; dissolved and particulate matter; volatile and non-volatile; reactive, and inert; hydrophilic and hydrophobic; and dissolved gases.

Lorentz force velocimetry (LFV) is a noncontact electromagnetic flow measurement technique. LFV is particularly suited for the measurement of velocities in liquid metals like steel or aluminium and is currently under development for metallurgical applications. The measurement of flow velocities in hot and aggressive liquids such as liquid aluminium and molten glass constitutes one of the grand challenges of industrial fluid mechanics. Apart from liquids, LFV can also be used to measure the velocity of solid materials as well as for detection of micro-defects in their structures.

Three-dimensional electrical capacitance tomography also known as electrical capacitance volume tomography (ECVT) is a non-invasive 3D imaging technology applied primarily to multiphase flows. It was introduced in the early 2000s as an extension of the conventional two-dimensional ECT. In conventional electrical capacitance tomography, sensor plates are distributed around a surface of interest. Measured capacitance between plate combinations is used to reconstruct 2D images (tomograms) of material distribution. Because the ECT sensor plates are required to have lengths on the order of the domain cross-section, 2D ECT does not provide the required resolution in the axial dimension. In ECT, the fringing field from the edges of the plates is viewed as a source of distortion to the final reconstructed image and is thus mitigated by guard electrodes. 3D ECT exploits this fringing field and expands it through 3D sensor designs that deliberately establish an electric field variation in all three dimensions. In 3D tomography, the data are acquired in 3D geometry, and the reconstruction algorithm produces the three-dimensional image directly, in contrast to 2D tomography, where 3D information might be obtained by stacking 2D slices reconstructed individually.

References

  1. "Conductivity Meter - Holme Research group - Iowa State University". Holme Research Group - Iowa State University. Retrieved 30 June 2024.