Environmental impact of cattle

Last updated

The production of cattle has a significant environmental impact, whether measured in terms of methane emissions, land use, consumption of water, discharge of pollutants, or eutrophication of waterways.

Contents

Estimated virtual water requirements for various foods
(m3 water/ton) [1]
Hoekstra
& Hung

(2003)
Chapagain
& Hoekstra
(2003)
Zimmer
& Renault
(2003)
Oki et al.
(2003)
Average
Beef15,97713,50020,70016,730
Pork5,9064,6005,9005,470
Cheese5,2885,290
Poultry2,8284,1004,5003,810
Eggs4,6572,7003,2003,520
Rice2,6561,4003,6002,550
Soybeans2,3002,7502,5002,520
Wheat1,1501,1602,0001,440
Maize4507101,9001,020
Milk865790560740
Potatoes160105130
Mean land use of different foods [2]
Food TypesLand Use (m2·year per 100 g protein)
Lamb and Mutton
185
Beef
164
Cheese
41
Pork
11
Poultry
7.1
Eggs
5.7
Farmed Fish
3.7
Peanuts
3.5
Peas
3.4
Tofu
2.2

Significant numbers of dairy, as well as beef cattle, are confined in concentrated animal feeding operations (CAFOs), defined as "new and existing operations which stable or confine and feed or maintain for a total of 45 days or more in any 12-month period more than the number of animals specified" [3] where "[c]rops, vegetation, forage growth, or post-harvest residues are not sustained in the normal growing season over any portion of the lot or facility." [4] They may be designated as small, medium and large. Such designation of cattle CAFOs is according to cattle type (mature dairy cows, veal calves or other) and cattle numbers, but medium CAFOs are so designated only if they meet certain discharge criteria, and small CAFOs are designated only on a case-by-case basis. [5]

Mean eutrophying emissions (water pollution) of different foods per 100 g of protein [2]
Food TypesEutrophying Emissions (g PO43-eq per 100 g protein)
Beef
365.3
Farmed Fish
235.1
Farmed Crustaceans
227.2
Cheese
98.4
Lamb and Mutton
97.1
Pork
76.4
Poultry
48.7
Eggs
21.8
Peanuts
14.1
Peas
7.5
Tofu
6.2
Mean acidifying emissions (air pollution) of different foods per 100 g of protein [2]
Food TypesAcidifying Emissions (g SO2eq per 100 g protein)
Beef
343.6
Cheese
165.5
Pork
142.7
Lamb and Mutton
139.0
Farmed Crustaceans
133.1
Poultry
102.4
Farmed Fish
65.9
Eggs
53.7
Peanuts
22.6
Peas
8.5
Tofu
6.7

A CAFO that discharges pollutants is required to obtain a permit, which requires a plan to manage nutrient runoff, manure, chemicals, contaminants, and other wastewater pursuant to the US Clean Water Act. [6] The regulations involving CAFO permitting have been extensively litigated. [7]

Commonly, CAFO wastewater and manure nutrients are applied to land at agronomic rates for use by forages or crops, and it is often assumed that various constituents of wastewater and manure, e.g. organic contaminants and pathogens, will be retained, inactivated or degraded on the land with application at such rates; however, additional evidence is needed to test reliability of such assumptions. [8] Concerns raised by opponents of CAFOs have included risks of contaminated water due to feedlot runoff, [9] soil erosion, human and animal exposure to toxic chemicals, development of antibiotic resistant bacteria and an increase in E. coli contamination. [10] While research suggests some of these impacts can be mitigated by developing wastewater treatment systems [9] and planting cover crops in larger setback zones, [11] the Union of Concerned Scientists released a report in 2008 concluding that CAFOs are generally unsustainable and externalize costs. [12]

Another concern is manure, which if not well-managed, can lead to adverse environmental consequences. However, manure also is a valuable source of nutrients and organic matter when used as a fertilizer. [13] Manure was used as a fertilizer on about 6,400,000 hectares (15.8 million acres) of US cropland in 2006, with manure from cattle accounting for nearly 70% of manure applications to soybeans and about 80% or more of manure applications to corn, wheat, barley, oats and sorghum. [14] Substitution of manure for synthetic fertilizers in crop production can be environmentally significant, as between 43 and 88 megajoules of fossil fuel energy would be used per kg of nitrogen in manufacture of synthetic nitrogenous fertilizers. [15]

Grazing by cattle at low intensities can create a favourable environment for native herbs and forbs by mimicking the native grazers who they displaced; in many world regions, though, cattle are reducing biodiversity due to overgrazing. [16] A survey of refuge managers on 123 National Wildlife Refuges in the US tallied 86 species of wildlife considered positively affected and 82 considered negatively affected by refuge cattle grazing or haying. [17] Proper management of pastures, notably managed intensive rotational grazing and grazing at low intensities can lead to less use of fossil fuel energy, increased recapture of carbon dioxide, fewer ammonia emissions into the atmosphere, reduced soil erosion, better air quality, and less water pollution. [12]

Methane and nitrous oxide emissions

The Food and Agriculture Organization estimates that in 2015 around 7% of global greenhouse gas emissions (GHG) were due to cattle, [note 1] but this is uncertain. [19] Another estimate is 12% of global GHG. [20] More recently Climate Trace estimates 4.5% directly from cattle in 2022. Reducing methane emissions quickly helps limit climate change. [19]

Beef and lamb have the largest carbon footprint of protein-rich foods. Carbon footprint of protein foods.png
Beef and lamb have the largest carbon footprint of protein-rich foods.
Estimates by Climate TRACE [21]
Billion tonnes CO2eq (% of total global emissions)20222023
Enteric fermentation cattle feedlot7.95 (1.76)
Enteric fermentation cattle pasture8.55 (1.90)
Manure left on pasture cattle2.91 (0.65)
Manure management cattle feedlot0.70 (0.16)
Total20.11 (4.47)
Methane production from cows, and land conversion for grazing and animal feed means beef from dedicated beef herds has a very high carbon footprint. Environmental-impact-of-food-by-life-cycle-stage.png
Methane production from cows, and land conversion for grazing and animal feed means beef from dedicated beef herds has a very high carbon footprint.

Gut flora in cattle include methanogens that produce methane as a byproduct of enteric fermentation, which cattle belch out. Additional methane is produced by anaerobic fermentation of manure in manure lagoons and other manure storage structures. [22] Manure can also release nitrous oxide. [23] Over 20 years atmospheric methane has 81 times the global warming potential of the same amount of atmospheric carbon dioxide. [24]

As conditions vary a lot [25] the IPCC would like these taken into account when estimating methane emissions, in other words countries where cattle are significant should use Tier 3 methods in their national greenhouse gas inventories. [26] Although well-managed perennial pastures sequester carbon in the soil, as of 2023 life cycle assessments are required to fully assess pastoral dairy farms in all environments. [27]

Ways to reduce methane emissions being considered

Methane belching from cattle might be reduced by intensification of farming, [28] selective breeding, [27] immunization against the many methanogens, [27] rumen defaunation (killing the bacteria-killing protozoa), [29] diet modification (e.g. seaweed fortification), [30] decreased antibiotic use, [31] and grazing management. [32]

Agricultural subsidies for cattle and their feedstock could be stopped. [33] A more controversial suggestion, advocated by George Monbiot in the documentary "Apocalypse Cow", is to stop farming cattle completely, however farmers often have political power so might be able to resist such a big change. [34]

Notes

  1. FAO say that in 2015 livestock production created around 12% of greenhouse gas emissions, some 62% of which is due to cattle, thus 7%. [18]

Related Research Articles

<span class="mw-page-title-main">Biogas</span> Gases produced by decomposing organic matter

Biogas is a gaseous renewable energy source produced from raw materials such as agricultural waste, manure, municipal waste, plant material, sewage, green waste, wastewater, and food waste. Biogas is produced by anaerobic digestion with anaerobic organisms or methanogens inside an anaerobic digester, biodigester or a bioreactor. The gas composition is primarily methane and carbon dioxide and may have small amounts of hydrogen sulfide, moisture and siloxanes. The methane can be combusted or oxidized with oxygen. This energy release allows biogas to be used as a fuel; it can be used in fuel cells and for heating purpose, such as in cooking. It can also be used in a gas engine to convert the energy in the gas into electricity and heat.

<span class="mw-page-title-main">Intensive farming</span> Branch of agricultire

Intensive agriculture, also known as intensive farming, conventional, or industrial agriculture, is a type of agriculture, both of crop plants and of animals, with higher levels of input and output per unit of agricultural land area. It is characterized by a low fallow ratio, higher use of inputs such as capital, labour, agrochemicals and water, and higher crop yields per unit land area.

<span class="mw-page-title-main">Rotational grazing</span> System of grazing moving animals between paddocks around the year

In agriculture, rotational grazing, as opposed to continuous grazing, describes many systems of pasturing, whereby livestock are moved to portions of the pasture, called paddocks, while the other portions rest. Each paddock must provide all the needs of the livestock, such as food, water and sometimes shade and shelter. The approach often produces lower outputs than more intensive animal farming operations, but requires lower inputs, and therefore sometimes produces higher net farm income per animal.

<span class="mw-page-title-main">Dairy farming</span> Long-term production of milk

Dairy farming is a class of agriculture for the long-term production of milk, which is processed for the eventual sale of a dairy product. Dairy farming has a history that goes back to the early Neolithic era, around the seventh millennium BC, in many regions of Europe and Africa. Before the 20th century, milking was done by hand on small farms. Beginning in the early 20th century, milking was done in large scale dairy farms with innovations including rotary parlors, the milking pipeline, and automatic milking systems that were commercially developed in the early 1990s.

<span class="mw-page-title-main">Grazing</span> Feeding livestock on forage

In agriculture, grazing is a method of animal husbandry whereby domestic livestock are allowed outdoors to free range and consume wild vegetations in order to convert the otherwise indigestible cellulose within grass and other forages into meat, milk, wool and other animal products, often on land that is unsuitable for arable farming.

<span class="mw-page-title-main">Concentrated animal feeding operation</span> Type of American intensive animal farming

In animal husbandry, a concentrated animal feeding operation (CAFO), as defined by the United States Department of Agriculture (USDA), is an intensive animal feeding operation (AFO) in which over 1,000 animal units are confined for over 45 days a year. An animal unit is the equivalent of 1,000 pounds of "live" animal weight. A thousand animal units equates to 700 dairy cows, 1,000 meat cows, 2,500 pigs weighing more than 55 pounds (25 kg), 10,000 pigs weighing under 55 pounds, 10,000 sheep, 55,000 turkeys, 125,000 chickens, or 82,000 egg laying hens or pullets.

An anaerobic lagoon or manure lagoon is a man-made outdoor earthen basin filled with animal waste that undergoes anaerobic respiration as part of a system designed to manage and treat refuse created by concentrated animal feeding operations (CAFOs). Anaerobic lagoons are created from a manure slurry, which is washed out from underneath the animal pens and then piped into the lagoon. Sometimes the slurry is placed in an intermediate holding tank under or next to the barns before it is deposited in a lagoon. Once in the lagoon, the manure settles into two layers: a solid or sludge layer and a liquid layer. The manure then undergoes the process of anaerobic respiration, whereby the volatile organic compounds are converted into carbon dioxide and methane. Anaerobic lagoons are usually used to pretreat high strength industrial wastewaters and municipal wastewaters. This allows for preliminary sedimentation of suspended solids as a pretreatment process.

<span class="mw-page-title-main">Environmental vegetarianism</span> Type of practice of vegetarianism

Environmental vegetarianism is the practice of vegetarianism that is motivated by the desire to create a sustainable diet, which avoids the negative environmental impact of meat production. Livestock as a whole is estimated to be responsible for around 15% of global greenhouse gas emissions. As a result, significant reduction in meat consumption has been advocated by, among others, the Intergovernmental Panel on Climate Change in their 2019 special report and as part of the 2017 World Scientists' Warning to Humanity.

<i>Livestocks Long Shadow</i> United Nations report

Livestock's Long Shadow: Environmental Issues and Options is a United Nations report, released by the Food and Agriculture Organization (FAO) of the United Nations on 29 November 2006, that "aims to assess the full impact of the livestock sector on environmental problems, along with potential technical and policy approaches to mitigation". It stated that livestock accounts for 18% of anthropogenic greenhouse gas emissions, a figure which FAO changed to 14.5% in its 2013 study Tackling climate change through livestock.

<span class="mw-page-title-main">Low-carbon diet</span> Diet to reduce greenhouse gas emissions

A low-carbon diet is any diet that results in lower greenhouse gas emissions. Choosing a low carbon diet is one facet of developing sustainable diets which increase the long-term sustainability of humanity. Major tenets of a low-carbon diet include eating a plant-based diet, and in particular little or no beef and dairy. Low-carbon diets differ around the world in taste, style, and the frequency they are eaten. Asian countries like India and China feature vegetarian and vegan meals as staples in their diets. In contrast, Europe and North America rely on animal products for their Western diets.

<span class="mw-page-title-main">Environmental impacts of animal agriculture</span> Impact of farming animals on the environment

The environmental impacts of animal agriculture vary because of the wide variety of agricultural practices employed around the world. Despite this, all agricultural practices have been found to have a variety of effects on the environment to some extent. Animal agriculture, in particular meat production, can cause pollution, greenhouse gas emissions, biodiversity loss, disease, and significant consumption of land, food, and water. Meat is obtained through a variety of methods, including organic farming, free-range farming, intensive livestock production, and subsistence agriculture. The livestock sector also includes wool, egg and dairy production, the livestock used for tillage, and fish farming.

The environmental impact of agriculture is the effect that different farming practices have on the ecosystems around them, and how those effects can be traced back to those practices. The environmental impact of agriculture varies widely based on practices employed by farmers and by the scale of practice. Farming communities that try to reduce environmental impacts through modifying their practices will adopt sustainable agriculture practices. The negative impact of agriculture is an old issue that remains a concern even as experts design innovative means to reduce destruction and enhance eco-efficiency. Though some pastoralism is environmentally positive, modern animal agriculture practices tend to be more environmentally destructive than agricultural practices focused on fruits, vegetables and other biomass. The emissions of ammonia from cattle waste continue to raise concerns over environmental pollution.

<span class="mw-page-title-main">Agricultural pollution</span> Type of pollution caused by agriculture

Agricultural pollution refers to biotic and abiotic byproducts of farming practices that result in contamination or degradation of the environment and surrounding ecosystems, and/or cause injury to humans and their economic interests. The pollution may come from a variety of sources, ranging from point source water pollution to more diffuse, landscape-level causes, also known as non-point source pollution and air pollution. Once in the environment these pollutants can have both direct effects in surrounding ecosystems, i.e. killing local wildlife or contaminating drinking water, and downstream effects such as dead zones caused by agricultural runoff is concentrated in large water bodies.

The United States Environmental Protection Agency (EPA) defines an animal feeding operation (AFO) in the Code of Federal Regulations as a lot or facility where the following conditions are met:

<span class="mw-page-title-main">Livestock</span> Animals kept for production of meat, eggs, milk, wool, etc.

Livestock are the domesticated animals raised in an agricultural setting in order to provide labour and produce diversified products for consumption such as meat, eggs, milk, fur, leather, and wool. The term is sometimes used to refer solely to animals who are raised for consumption, and sometimes used to refer solely to farmed ruminants, such as cattle, sheep, and goats. Horses are considered livestock in the United States. The USDA classifies pork, veal, beef, and lamb (mutton) as livestock, and all livestock as red meat. Poultry and fish are not included in the category. The latter is likely due to the fact that fish products are not governed by the USDA, but by the FDA.

<span class="mw-page-title-main">Cattle</span> Large, domesticated, cloven-hooved herbivores

Cattle are large, domesticated, bovid ungulates widely kept as livestock. They are prominent modern members of the subfamily Bovinae and the most widespread species of the genus Bos. Mature female cattle are called cows and mature male cattle are bulls. Young female cattle are called heifers, young male cattle are oxen or bullocks, and castrated male cattle are known as steers.

<span class="mw-page-title-main">Manure</span> Organic matter, mostly derived from animal feces, which can be used as fertilizer

Manure is organic matter that is used as organic fertilizer in agriculture. Most manure consists of animal feces; other sources include compost and green manure. Manures contribute to the fertility of soil by adding organic matter and nutrients, such as nitrogen, that are utilised by bacteria, fungi and other organisms in the soil. Higher organisms then feed on the fungi and bacteria in a chain of life that comprises the soil food web.

Increasing methane emissions are a major contributor to the rising concentration of greenhouse gases in Earth's atmosphere, and are responsible for up to one-third of near-term global heating. During 2019, about 60% of methane released globally was from human activities, while natural sources contributed about 40%. Reducing methane emissions by capturing and utilizing the gas can produce simultaneous environmental and economic benefits.

<span class="mw-page-title-main">FutureFeed</span>

FutureFeed was established by Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO), FutureFeed holds the global intellectual property for the use of Asparagopsis seaweed as a ruminant livestock feed ingredient that can reduce methane emissions by 80% or more. This result can be achieved by the addition of a small amount of the seaweed into the daily diet of livestock. This discovery was made by a team of scientists from CSIRO and James Cook University (JCU), supported by Meat & Livestock Australia (MLA), who came together in 2013 to investigate the methane reduction potential of various native Australian seaweeds.

<span class="mw-page-title-main">Greenhouse gas emissions from agriculture</span> Agricultures effects on climate change

The amount of greenhouse gas emissions from agriculture is significant: The agriculture, forestry and land use sector contribute between 13% and 21% of global greenhouse gas emissions. Agriculture contributes towards climate change through direct greenhouse gas emissions and by the conversion of non-agricultural land such as forests into agricultural land. Emissions of nitrous oxide and methane make up over half of total greenhouse gas emission from agriculture. Animal husbandry is a major source of greenhouse gas emissions.

References

  1. "Virtual Water Trade" (PDF). Wasterfootprint.org. Retrieved 30 March 2015.
  2. 1 2 3 Nemecek, T.; Poore, J. (1 June 2018). "Reducing food's environmental impacts through producers and consumers". Science. 360 (6392): 987–992. Bibcode:2018Sci...360..987P. doi: 10.1126/science.aaq0216 . ISSN   0036-8075. PMID   29853680.
  3. ""What is a Factory Farm?" Sustainable Table". Sustainabletable.org. Archived from the original on 5 June 2012. Retrieved 15 October 2013.
  4. US Code of Federal Regulations 40 CFR 122
  5. ""Regulatory Definitions of Large CAFOs, Medium CAFO, and Small CAFOs." Environmental Protection Agency Fact Sheet" (PDF). Archived (PDF) from the original on 24 September 2015. Retrieved 15 October 2013.
  6. US Code of Federal Regulations 40 CFR 122.23, 40 CFR 122.42
  7. Waterkeeper Alliance et al. v. EPA,399F.3d 486(2nd cir2005).
    National Pork Producers Council, et al. v. United States Environmental Protection Agency,635F. 3d 738(5th Cir2011).
  8. Bradford, S. A., E. Segal, W. Zheng, Q. Wang, and S. R. Hutchins. 2008. Reuse of concentrated animal feeding operation wastewater on agricultural lands. J. Env. Qual. 37 (supplement): S97-S115.
  9. 1 2 Koelsch, Richard; Balvanz, Carol; George, John; Meyer, Dan; Nienaber, John; Tinker, Gene. "Applying Alternative Technologies to CAFOs: A Case Study" (PDF). Archived from the original (PDF) on 17 October 2013. Retrieved 16 January 2018.
  10. "Ikerd, John. The Economics of CAFOs & Sustainable Alternatives". Web.missouri.edu. Archived from the original on 10 August 2014. Retrieved 15 October 2013.
  11. "Hansen, Dave, Nelson, Jennifer and Volk, Jennifer. Setback Standards and Alternative Compliance Practices to Satisfy CAFO Requirements: An assessment for the DEF-AG group" (PDF). Archived from the original (PDF) on 2 May 2012. Retrieved 15 October 2013.
  12. 1 2 "Gurian-Sherman, Doug. CAFOs Uncovered: The Untold Costs of Confined Animal Feeding Operations" (PDF). Archived (PDF) from the original on 26 January 2013. Retrieved 15 October 2013.
  13. "Manure management". FAO. Archived from the original on 3 September 2013. Retrieved 15 October 2013.
  14. McDonald, J. M. et al. 2009. Manure use for fertilizer and for energy. Report to Congress. USDA, AP-037. 53pp.
  15. Shapouri, H. et al. 2002. The energy balance of corn ethanol: an update. USDA Agricultural Economic Report 814.
  16. E.O. Wilson, The Future of Life, 2003, Vintage Books, 256 pages ISBN   0-679-76811-4
  17. Strassman, B. I. 1987. Effects of cattle grazing and haying on wildlife conservation at National Wildlife Refuges in the United States. Environmental Mgt. 11: 35–44 .
  18. "New FAO report maps pathways towards lower livestock emissions". Newsroom. Retrieved 2024-03-25.
  19. 1 2 "Livestock Don't Contribute 14.5% of Global Greenhouse Gas Emissions". The Breakthrough Institute. Retrieved 2024-03-25.
  20. "Treating beef like coal would make a big dent in greenhouse-gas emissions" . The Economist. 2 October 2021. ISSN   0013-0613 . Retrieved 3 November 2021.
  21. "Sectors - Climate TRACE". climatetrace.org. Retrieved 2024-03-27.
  22. US EPA. 2012. Inventory of U.S. greenhouse gase emissions and sinks: 1990–2010. US. Environmental Protection Agency. EPA 430-R-12-001. Section 6.2.
  23. Rivera, Julián Esteban; Chará, Julian (2021). "CH4 and N2O Emissions From Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in Grazing Systems". Frontiers in Sustainable Food Systems. 5. doi: 10.3389/fsufs.2021.657936 . ISSN   2571-581X.
  24. 7.SM.6 Tables of greenhouse gas lifetimes, radiative efficiencies and metrics (PDF), IPCC, 2021, p. 7SM-24.
  25. Eckard, R. J.; Grainger, C.; de Klein, C.A.M. (2010). "Options for the abatement of methane and nitrous oxide from ruminant production: A review". Livestock Science. 130 (1–3): 47–56. doi:10.1016/j.livsci.2010.02.010.
  26. Ghassemi Nejad, J.; Ju, M. S.; Jo, J. H.; Oh, K. H.; Lee, Y. S.; Lee, S. D.; Kim, E. J.; Roh, S.; Lee, H. G. (2024). "Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies". Animals. 14 (3): 435. doi: 10.3390/ani14030435 . PMC   10854801 . PMID   38338080.
  27. 1 2 3 Soder, K. J.; Brito, A. F. (2023). "Enteric methane emissions in grazing dairy systems". JDS Communications. 4 (4): 324–328. doi:10.3168/jdsc.2022-0297. PMC   10382831 . PMID   37521055.
  28. Reisinger, Andy; Clark, Harry; Cowie, Annette L.; Emmet-Booth, Jeremy; Gonzalez Fischer, Carlos; Herrero, Mario; Howden, Mark; Leahy, Sinead (2021-11-15). "How necessary and feasible are reductions of methane emissions from livestock to support stringent temperature goals?". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 379 (2210): 20200452. Bibcode:2021RSPTA.37900452R. doi:10.1098/rsta.2020.0452. ISSN   1364-503X. PMC   8480228 . PMID   34565223.
  29. L. Aban, Maita; C. Bestil, Lolito (2016). "Rumen Defaunation: Determining the Level and Frequency of Leucaena leucocephala Linn. Forage" (PDF). International Journal of Food Engineering. 2 (1).
  30. Lewis Mernit, Judith (2 July 2018). "How Eating Seaweed Can Help Cows to Belch Less Methane". Yale School of the Environment. Retrieved 29 January 2022.
  31. Axt, Barbara (25 May 2016). "Treating cows with antibiotics doubles dung methane emissions". New Scientist. Retrieved 5 October 2019.
  32. Willis, Katie. "Grazing livestock could reduce greenhouse gases in the atmosphere, study shows". www.ualberta.ca. Retrieved 2024-04-10.
  33. Carrington, Damian (2021-09-14). "Nearly all global farm subsidies harm people and planet – UN". The Guardian . ISSN   0261-3077 . Retrieved 2024-03-27.
  34. "George Monbiot: "Agriculture is arguably the most destructive industry on Earth"". New Statesman . 13 May 2022. Retrieved 4 June 2022.