Eurypygimorphae

Last updated

Eurypygimorphae
Temporal range: Early Paleocene - present [1]
O
S
D
C
P
T
J
K
Pg
N
Possible Maastrichtian record
White-tailed tropicbird.jpg
Eurypyga helias -Smithsonian National Zoological Park, USA-8.jpg
Top: white-tailed tropicbird (Phaethontiformes)
Bottom: sunbittern (Eurypygiformes)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Aves
Clade: Phaethoquornithes
Clade: Eurypygimorphae
Fürbringer, 1888
Orders

Eurypygimorphae or Phaethontimorphae is a clade of birds that contains the orders Phaethontiformes (tropicbirds) and Eurypygiformes (kagu and sunbittern) recovered by genome analysis. [2] The relationship was first identified in 2013 based on their nuclear genes. [3] This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Phaethon aethereus , Eurypyga helias , and Rhynochetos jubatus ". [4] Historically these birds were placed at different parts of the tree, with tropicbirds in Pelecaniformes and the kagu and sunbittern in Gruiformes. Some genetic analyses have placed the eurypygimorph taxa in the controversial and obsolete clade Metaves, with uncertain placement within that group. [5] [6] More recent molecular studies support their grouping together in Eurypygimorphae, which is usually recovered as the sister taxon to Aequornithes within Ardeae. [2] [7] [8]

Related Research Articles

<span class="mw-page-title-main">Neognathae</span> Infraclass of birds

Neognathae is an infraclass of birds, called neognaths, within the class Aves of the clade Archosauria. Neognathae includes the majority of living birds; the exceptions being the tinamous and the flightless ratites, which belong instead to the sister taxon Palaeognathae. There are nearly 10,000 living species of neognaths.

<span class="mw-page-title-main">Phaethontiformes</span> Order of birds

The Phaethontiformes are an order of birds. They contain one extant family, the tropicbirds (Phaethontidae), and one extinct family Prophaethontidae from the early Cenozoic. Several fossil genera have been described, with well-preserved fossils known as early as the Paleocene. The group's origins may lie even earlier if the enigmatic waterbird Novacaesareala from the latest Cretaceous or earliest Paleocene of New Jersey is considered a tropicbird.

<span class="mw-page-title-main">Neoaves</span> Clade of birds

Neoaves is a clade that consists of all modern birds with the exception of Palaeognathae and Galloanserae. This group is defined in the PhyloCode by George Sangster and colleagues in 2022 as "the most inclusive crown clade containing Passer domesticus, but not Gallus gallus". Almost 95% of the roughly 10,000 known species of extant birds belong to the Neoaves.

<span class="mw-page-title-main">Mirandornithes</span> Taxon of birds

Mirandornithes is a clade that consists of flamingos and grebes. Many scholars use the term Phoenicopterimorphae for the superorder containing flamingoes and grebes.

<span class="mw-page-title-main">Aequornithes</span> Clade of birds

Aequornithes, or core water birds, are defined in the PhyloCode as "the least inclusive crown clade containing Pelecanus onocrotalus and Gavia immer".

<span class="mw-page-title-main">Psittacopasseres</span> Clade of birds

Psittacopasseres is a taxon of birds consisting of the Passeriformes and Psittaciformes (parrots). Per Ericson and colleagues, in analysing genomic DNA, revealed a lineage comprising passerines, psittacines and Falconiformes. The group was proposed following an alignment of nuclear intron sequences by Shannon Hackett et al. in 2008. It was formally named as Psittacopasserae in a 2011 Nature Communications article by Alexander Suh and other authors working with Jürgen Schmitz's group, based on genetic analysis of the insertion of retroposons into the genomes of key avian lineages over the course of evolution during the Mesozoic Era. This clade was defined in the PhyloCode by George Sangster and colleagues in 2022 as the least inclusive crown clade containing Psittacus erithacus and Passer domesticus.

<span class="mw-page-title-main">Australaves</span> Clade of birds

Australaves is a clade of birds, defined in 2012, consisting of the Eufalconimorphae as well as the Cariamiformes. They appear to be the sister group of Afroaves. This clade was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Cariama cristata and Passer domesticus".

<span class="mw-page-title-main">Afroaves</span> Clade of birds

Afroaves is a clade of birds, consisting of the kingfishers and kin (Coraciiformes), woodpeckers and kin (Piciformes), hornbills and kin (Bucerotiformes), trogons (Trogoniformes), cuckoo roller (Leptosomiformes), mousebirds (Coliiformes), owls (Strigiformes), raptors (Accipitriformes) and New World vultures (Cathartiformes). The most basal clades are predatory, suggesting the last common ancestor of Afroaves was also a predatory bird. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Accipiter nisus, Colius colius, and Picus viridis, but not Passer domesticus".

<span class="mw-page-title-main">Telluraves</span> Clade of birds

Telluraves is a recently defined clade of birds defined by their arboreality. Based on most recent genetic studies, the clade unites a variety of bird groups, including the australavians as well as the afroavians. This grouping was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Accipiter nisus and Passer domesticus". They appear to be the sister group of the Phaethoquornithes.

<span class="mw-page-title-main">Otidimorphae</span> Clade of birds

Otidimorphae is a clade of birds that contains the orders Cuculiformes (cuckoos), Musophagiformes (turacos), and Otidiformes (bustards) identified in 2014 by genome analysis. George Sangster and colleagues in 2022 named the clade uniting turacos and bustards as Musophagotides, defining it in the PhyloCode as "the least inclusive crown clade containing Otis tarda and Musophaga violacea, but not Grus grus or Mesitornis variegatus".

<span class="mw-page-title-main">Phaethoquornithes</span> Taxon of birds

Phaethoquornithes is a clade of birds that contains Eurypygimorphae and Aequornithes, which was first recovered by genome analysis in 2014. Members of Eurypygimorphae were originally classified in the obsolete group Metaves, and Aequornithes were classified as the sister taxon to Musophagiformes or Gruiformes.

<span class="mw-page-title-main">Coraciimorphae</span> Clade of birds

Coraciimorphae is a clade of birds that contains the order Coliiformes (mousebirds) and the clade Cavitaves. The name however was coined in the 1990s by Sibley and Ahlquist based on their DNA-DNA hybridization studies conducted in the late 1970s and throughout the 1980s. However their Coraciimorphae only contains Trogoniformes and Coraciiformes. Coraciimorphae was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Colius colius and Picus viridis, but not Accipiter nisus or Passer domesticus".

<span class="mw-page-title-main">Eucavitaves</span> Clade of birds

Eucavitaves is a clade that contains the order Trogoniformes (trogons) and the clade Picocoraciae. The group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Trogon viridis and Picus viridis". The name refers to the fact that the majority of them nest in cavities.

<span class="mw-page-title-main">Cavitaves</span> Clade of birds

Cavitaves is a clade that contains the order Leptosomiformes and the clade Eucavitaves. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Leptosomus discolor and Picus viridis". The name refers to the fact that the majority of them nest in cavities.

<span class="mw-page-title-main">Picocoraciae</span> Clade of birds

Picocoraciae is a clade that contains the order Bucerotiformes and the clade Picodynastornithes supported by various genetic analysis and morphological studies. While these studies supported a sister grouping of Coraciiformes and Piciformes, a large scale, sparse supermatrix has suggested alternative sister relationship between Bucerotiformes and Piciformes instead. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Buceros rhinoceros, Coracias garrulus, and Picus viridis".

<span class="mw-page-title-main">Columbimorphae</span> Clade of birds

Columbimorphae is a clade/superorder discovered by genome analysis that includes birds of the orders Columbiformes, Pterocliformes (sandgrouse), and Mesitornithiformes (mesites). This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Columba oenas, Mesitornis variegatus, and Pterocles alchata". Previous analyses had also recovered this grouping, although the exact relationships differed. Some studies indicated a sister relationship between sandgrouse and pigeons while other studies favored a sister grouping of mesites and sandgrouse instead. This sister relationship of the sandgrouses and mesites was named by George Sangster and colleagues in 2022 as the clade Pteroclimesites and defined in the PhyloCode as "the least inclusive crown clade containing Mesitornis variegatus and Pterocles alchata".

<span class="mw-page-title-main">Picodynastornithes</span> Clade of birds

Picodynastornithes is a clade that contains the orders Coraciiformes and Piciformes. This grouping also has current and historical support from molecular and morphological studies. This group was defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive crown clade containing Coracias garrulus, Alcedo atthis, and Picus viridis".

<span class="mw-page-title-main">Notopalaeognathae</span> Clade of birds

Notopalaeognathae is a clade that contains the order Rheiformes (rheas), the clade Novaeratitae, and the clade Dinocrypturi. Notopalaeognathae was named by Yuri et al. (2013) and defined in the PhyloCode by Sangster et al. (2022) as "the least inclusive crown clade containing Rhea americana, Tinamus major, and Apteryx australis". The exact relationships of this group, including its recently extinct members, have only recently been uncovered. The two lineages endemic to New Zealand, the kiwis and the extinct moas, are not each other's closest relatives: the moas are most closely related to the Neotropical tinamous, and the kiwis are sister to the extinct elephant birds of Madagascar, with kiwis and elephant birds together sister to the cassowaries and emu of New Guinea and Australia. The South American rheas are either sister to all other notopalaeognaths or sister to Novaeratitae. The sister group to Notopalaeognathae is Struthionidae.

<span class="mw-page-title-main">Novaeratitae</span> Clade of birds

Novaeratitae is a proposed clade that was originally defined to contain the recent common ancestors of the orders Casuariiformes and Apterygiformes (kiwis). This clade was named by Yuri et al. (2013) and phylogenetically defined in the PhyloCode by Sangster et al. (2022) as "the least inclusive crown clade containing Apteryx australis and Casuarius casuarius". Recently it has been determined that the elephant birds of the extinct order Aepyornithiformes were the closest relatives of the kiwis, and therefore are part of this group. The implication is that ratites had lost flight independently in each group, as the elephant birds are the only novaeratites found outside Oceania. This clade has been contested by other studies, which find the relationships between the four main clades of non-ostrich palaeognaths to be an unresolved polytomy, with only slightly more genetic support for Novaeritiae over alternative proposals.

<span class="mw-page-title-main">Pelecanimorphae</span> Clade of birds

Pelecanimorphae is a clade of aequornithean birds that comprises the orders Ciconiiformes, Suliformes and Pelecaniformes. In the past the name has been used as a homonym for Pelecaniformes. Pelecanimorphae is defined in the PhyloCode by George Sangster and colleagues in 2022 as "the least inclusive clade containing Pelecanus onocrotalus, Sula leucogaster, and Ciconia ciconia". The less inclusive clade Pelecanes was named by Sangster et al, 2022 to unite Pelecaniformes and Suliformes and defined in the PhyloCode as the "least inclusive crown clade containing Pelecanus onocrotalus and Sula leucogaster".

References

  1. Mayr, G.; De Pietri, V. L.; Love, L.; Mannering, A.; Crouch, E.; Reid, C.; Scofield, R. P. (2023). "Partial skeleton from the Paleocene of New Zealand illuminates the early evolutionary history of the Phaethontiformes (tropicbirds)". Alcheringa: An Australasian Journal of Palaeontology. 47 (3): 315–326. Bibcode:2023Alch...47..315M. doi: 10.1080/03115518.2023.2246528 .
  2. 1 2 Jarvis, E.D.; et al. (2014). "Whole-genome analyses resolve early branches in the tree of life of modern birds". Science. 346 (6215): 1320–1331. Bibcode:2014Sci...346.1320J. doi:10.1126/science.1253451. PMC   4405904 . PMID   25504713.
  3. Yuri, Tamaki; Kimball, Rebecca; Harshman, John; et al. (2013). "Parsimony and Model-Based Analyses of Indels in Avian Nuclear Genes Reveal Congruent and Incongruent Phylogenetic Signals". Biology. 2 (1): 419–444. doi: 10.3390/biology2010419 . PMC   4009869 . PMID   24832669.
  4. Sangster, George; Braun, Edward L.; Johansson, Ulf S.; Kimball, Rebecca T.; Mayr, Gerald; Suh, Alexander (2022-01-01). "Phylogenetic definitions for 25 higher-level clade names of birds" (PDF). Avian Research. 13: 100027. Bibcode:2022AvRes..1300027S. doi: 10.1016/j.avrs.2022.100027 . ISSN   2053-7166.
  5. Ericson, P. G.P; Anderson, C. L; Britton, T.; Elzanowski, A.; Johansson, U. S; Kallersjo, M.; Ohlson, J. I; Parsons, T. J; Zuccon, D.; Mayr, G. (2006). "Diversification of Neoaves: integration of molecular sequence data and fossils". Biology Letters. 2 (4): 543–547. doi:10.1098/rsbl.2006.0523. PMC   1834003 . PMID   17148284.
  6. Hackett, S. J.; Kimball, R. T.; Reddy, S.; et al. (2008). "A Phylogenomic Study of Birds Reveals Their Evolutionary History" (PDF). Science. 320 (5884): 1763–1768. Bibcode:2008Sci...320.1763H. doi:10.1126/science.1157704. PMID   18583609. S2CID   6472805.
  7. Prum, R.O. et al. (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573.
  8. Suh, Alexander (2016). "The phylogenomic forest of bird trees contains a hard polytomy at the root of Neoaves". Zoologica Scripta. 45: 50–62. doi: 10.1111/zsc.12213 . ISSN   0300-3256.