Exploding wire method

Last updated

The exploding wire method or EWM is a way to generate plasma that consists of sending a strong enough pulse of electric current through a thin wire of some electrically conductive material. The resistive heating vaporizes the wire, and an electric arc through that vapor creates an explosive shockwave.

Contents

Exploding wires are used as detonators for explosives, as momentary high intensity light sources, and in the production of metal nanoparticles.

History

One of the first documented cases of using electricity to melt a metal occurred in the late 1700s [1] and is credited to Martin van Marum who melted 70 feet of metal wire with 64 Leyden Jars as a capacitor. Van Marum's generator was built in 1784, and is now located in the Teylers Museum in the Netherlands. Years later, Benjamin Franklin vaporized thin gold leaf to burn images onto paper. [2] [3] While neither Marum nor Franklin actually incited the exploding wire phenomenon, they were both important steps towards its discovery.

Edward Nairne was the first to note the existence of the exploding wire method in 1774 with silver and copper wire. Subsequently, Michael Faraday used EWM to deposit thin gold films through the solidification of vaporized metal on adjacent surfaces. Then, vapor deposits of metal gas as a result of EWM were studied by August Toepler during the 1800s. Spectrography investigation of the process, led by J.A. Anderson, became widespread in the 1900s. The spectrography experiments enabled a better understanding and subsequently the first glimpses of practical application. The mid 20th century saw experiments with EWM as a light source and for the production of nanoparticles in aluminum, uranium and plutonium wires. Congruently, Luis Álvarez and Lawrence H. Johnston of the Manhattan Project found use for EWM in the development of nuclear detonators. [3] [4]

Current day research focuses on utilizing EWM to produce nanoparticles as well as better understanding specifics of the mechanism such as the effects of the system environment on the process.

Mechanism

The basic components needed for the exploding wire method are a thin conductive wire and a capacitor. The wire is typically gold, aluminum, iron or platinum, and is usually less than 0.5 mm in diameter. The capacitor has an energy consumption of about 25 kWh/kg and discharges a pulse of current density 104 - 106 A/mm2, [5] leading to temperatures up to 100,000  K. The phenomenon occurs over a time period of only 10−8 - 10−5 seconds. [6]

The process is as follows:

  1. A rising current, supplied by the capacitor, is carried across the wire.
  2. The current heats up the wire through ohmic heating until the metal begins to melt. The metal melts to form a broken series of imperfect spheres called unduloids. The current rises so fast that the liquid metal has no time to move out of the way.
  3. The unduloids vaporize. The metal vapor creates a lower resistance path, allowing an even higher current to flow.
  4. An electric arc is formed, which turns the vapor into plasma. A bright flash of light is also produced.
  5. The plasma is allowed to expand freely, creating a shock wave.
  6. Electromagnetic radiation is released in tandem with the shock wave.
  7. The shock wave pushes liquid, gaseous and plasmatic metal outwards, breaking the circuit and ending the process.

Practical Application

EWM research has suggested possible applications in the excitation of optical masers, high intensity light sources for communications, spacecraft propulsion, joining difficult materials such as quartz, and generation of high power radio-frequency pulses. [3] The most promising applications of EWM are as a detonator, light source, and for the production of nanoparticles.

Detonator

EWM has found its most common use as a detonator, named the exploding-bridgewire detonator, for nuclear bombs. Bridgewire detonators are advantageous over chemical fuzes as the explosion is consistent and occurs only a few microseconds after the current is applied, with variation of only a few tens of nanoseconds from detonator to detonator. [7]

Light Source

EWM is an effective mechanism by which to get a short duration high intensity light source. The peak intensity for copper wire, for example, is 9.6·108 candle power/cm2. [8] J.A. Anderson wrote in his initial spectrography studies that the light was comparable to a black body at 20,000 K. [9] The advantage of a flash produced in this way is that it is easily reproducible with little variation in intensity. The linear nature of the wire allows for specifically shaped and angled light flashes and different types of wires can be used to produce different colors of light. [10] The light source can be used in interferometry, flash photolysis, quantitative spectroscopy, and high-speed photography.

Production of Nanoparticles

Nanoparticles are created by EWM when the ambient gas of the system cools the recently produced vaporous metal. [11] EWM can be used to cheaply and efficiently produce nanoparticles at a rate of 50 – 300 grams per hour and at a purity of above 99%. [6] [5] The process requires a relatively low energy consumption as little energy is lost in an electric to thermal energy conversion. Environmental effects are minimal due to the process taking place in a closed system. The Particles can be as small as 10 nm but are most commonly below 100 nm in diameter. Physical attributes of the nanopowder can be altered depending on the parameters of the explosion. For example, as the voltage of the capacitor is raised, the particle diameter decreases. Also, the pressure of the gas environment can change the dispersiveness of the nanoparticles. [6] Through such manipulations the functionality of the nanopowder may be altered.

When EWM is performed in a standard atmosphere containing oxygen, metal oxides are formed. Pure metal nanoparticles can also be produced with EWM in an inert environment, usually argon gas or distilled water. [12] Pure metal nanopowders must be kept in their inert environment because they ignite when exposed to oxygen in air. [5] Often, the metal vapor is contained by operating the mechanism within a steel box or similar container.

Nanoparticles are a relatively new material used in medicine, manufacturing, environmental cleanup and circuitry. Metal oxide and pure metal nanoparticles are used in Catalysis, sensors, oxygen antioxident, self repairing metal, ceramics, UV ray protection, odor proofing, improved batteries, printable circuits, optoelectronic materials, and Environmental remediation. [13] [14] The demand for metal nanoparticles, and therefore production methods, has increased as interest in nanotechnology continues to rise. Despite its overwhelming simplicity and efficiency, it is difficult to modify the experimental apparatus to be used on an industrial scale. As such, EWM has not seen widespread utilization in material production industry due to issues in manufacturing quantity. Still, for some time, Argonide offered metal nanopowders made by the exploding wire method that that were manufactured in Russia. [15]

Related Research Articles

<span class="mw-page-title-main">Detonator</span> Small explosive device used to trigger a larger explosion

A detonator, sometimes called a blasting cap in the US, is a small sensitive device used to provoke a larger, more powerful but relatively insensitive secondary explosive of an explosive device used in commercial mining, excavation, demolition, etc.

<span class="mw-page-title-main">Flash (photography)</span> Device producing a burst of artificial light

A flash is a device used in photography that produces a brief burst of light at a color temperature of about 5,500 K to help illuminate a scene. A major purpose of a flash is to illuminate a dark scene. Other uses are capturing quickly moving objects or changing the quality of light. Flash refers either to the flash of light itself or to the electronic flash unit discharging the light. Most current flash units are electronic, having evolved from single-use flashbulbs and flammable powders. Modern cameras often activate flash units automatically.

<span class="mw-page-title-main">Exploding-bridgewire detonator</span> Detonator fired by electric current

The exploding-bridgewire detonator is a type of detonator used to initiate the detonation reaction in explosive materials, similar to a blasting cap because it is fired using an electric current. EBWs use a different physical mechanism than blasting caps, using more electricity delivered much more rapidly. Exploding with more precise timing after the electric current is applied, by the process of exploding wire method. This has led to their common use in nuclear weapons.

<span class="mw-page-title-main">Flashtube</span> Incoherent light source

A flashtube (flashlamp) is an electric arc lamp designed to produce extremely intense, incoherent, full-spectrum white light for a very short time. A flashtube is a glass tube with an electrode at each end and is filled with a gas that, when triggered, ionizes and conducts a high-voltage pulse to make light. Flashtubes are used most in photography; they also are used in science, medicine, industry, and entertainment.

<span class="mw-page-title-main">Mercury-vapor lamp</span> Light source using an electric arc through mercury vapor

A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger soda lime or borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.

<span class="mw-page-title-main">Electric arc</span> Electrical breakdown of a gas that results in an ongoing electrical discharge

An electric arc is an electrical breakdown of a gas that produces a prolonged electrical discharge. The current through a normally nonconductive medium such as air produces a plasma, which may produce visible light. An arc discharge is initiated either by thermionic emission or by field emission. After initiation, the arc relies on thermionic emission of electrons from the electrodes supporting the arc. An arc discharge is characterized by a lower voltage than a glow discharge. An archaic term is voltaic arc, as used in the phrase "voltaic arc lamp".

<span class="mw-page-title-main">Steam explosion</span> Explosion created from a violent boiling of water

A steam explosion is an explosion caused by violent boiling or flashing of water or ice into steam, occurring when water or ice is either superheated, rapidly heated by fine hot debris produced within it, or heated by the interaction of molten metals. Steam explosions are instances of explosive boiling. Pressure vessels, such as pressurized water (nuclear) reactors, that operate above atmospheric pressure can also provide the conditions for a steam explosion. The water changes from a solid or liquid to a gas with extreme speed, increasing dramatically in volume. A steam explosion sprays steam and boiling-hot water and the hot medium that heated it in all directions, creating a danger of scalding and burning.

<span class="mw-page-title-main">Metal-halide lamp</span> Type of lamp

A metal-halide lamp is an electrical lamp that produces light by an electric arc through a gaseous mixture of vaporized mercury and metal halides. It is a type of high-intensity discharge (HID) gas discharge lamp. Developed in the 1960s, they are similar to mercury vapor lamps, but contain additional metal halide compounds in the quartz arc tube, which improve the efficiency and color rendition of the light. The most common metal halide compound used is sodium iodide. Once the arc tube reaches its running temperature, the sodium dissociates from the iodine, adding orange and reds to the lamp's spectrum from the sodium D line as the metal ionizes. As a result, metal-halide lamps have high luminous efficacy of around 75–100 lumens per watt, which is about twice that of mercury vapor lights and 3 to 5 times that of incandescent lights and produce an intense white light. Lamp life is 6,000 to 15,000 hours. As one of the most efficient sources of high CRI white light, metal halides as of 2005 were the fastest growing segment of the lighting industry. They are used for wide area overhead lighting of commercial, industrial, and public places, such as parking lots, sports arenas, factories, and retail stores, as well as residential security lighting, automotive headlamps and indoor cannabis grow operations.

<span class="mw-page-title-main">Overvoltage</span> When voltage across/within a circuit is raised beyond the design limit

In electrical engineering, overvoltage is the raising of voltage beyond the design limit of a circuit or circuit element. The conditions may be hazardous. Depending on its duration, the overvoltage event can be transient—a voltage spike—or permanent, leading to a power surge.

A slapper detonator, also called exploding foil initiator (EFI), is a detonator developed by Lawrence Livermore National Laboratory, US Patent No. 4,788,913. It is an improvement over the earlier exploding-bridgewire detonator. Instead of directly coupling the shock wave from the exploding wire, the expanding plasma from an explosion of a metal foil drives another thin plastic or metal foil called a "flyer" or a "slapper" across a gap, and its high-velocity impact on an explosive then delivers the energy and shock needed to initiate a detonation. Normally all the slapper's kinetic energy is supplied by the heating of the plasma by the current passing through it, though constructions with a "back strap" to further drive the plasma forward by magnetic field also exist. This assembly is quite efficient; up to 30% of the electrical energy can be converted to the slapper's kinetic energy. The device's name is derived from the English word "slap".

<span class="mw-page-title-main">Trigatron</span>

A trigatron is a type of triggerable spark gap switch designed for high current and high voltage. It has very simple construction and in many cases is the lowest cost high energy switching option. It may operate in open air, it may be sealed, or it may be filled with a dielectric gas other than air or a liquid dielectric. The dielectric gas may be pressurized, or a liquid dielectric may be substituted to further extend the operating voltage. Trigatrons may be rated for repeated use, or they may be single-shot, destroyed in a single use.

<span class="mw-page-title-main">Arc flash</span> Heat and light produced during an electrical arc fault

An arc flash is the light and heat produced as part of an arc fault, a type of electrical explosion or discharge that results from a connection through air to ground or another voltage phase in an electrical system.

<span class="mw-page-title-main">Electric match</span> Device using electricity to ignite a combustible compound

An electric match is a device that uses an externally applied electric current to ignite a combustible compound.

<span class="mw-page-title-main">Evaporation (deposition)</span> Common method of thin-film deposition

Evaporation is a common method of thin-film deposition. The source material is evaporated in a vacuum. The vacuum allows vapor particles to travel directly to the target object (substrate), where they condense back to a solid state. Evaporation is used in microfabrication, and to make macro-scale products such as metallized plastic film.

A bridgewire or bridge wire, also known as a hot bridge wire (HBW), is a relatively thin resistance wire used to set off a pyrotechnic composition serving as pyrotechnic initiator. By passing of electric current it is heated to a high temperature that starts the exothermic chemical reaction of the attached composition. After successful firing, the bridgewire melts, resulting in an open circuit.

<span class="mw-page-title-main">RaLa Experiment</span> Test to study nuclear shock waves

The RaLa Experiment, or RaLa, was a series of tests during and after the Manhattan Project designed to study the behavior of converging shock waves to achieve the spherical implosion necessary for compression of the plutonium pit of the nuclear weapon. The experiment used significant amounts of a short-lived radioisotope lanthanum-140, a potent source of gamma radiation; the RaLa is a contraction of Radioactive Lanthanum. The method was proposed by Robert Serber and developed by a team led by the Italian experimental physicist Bruno Rossi.

Laser drilling is the process of creating thru-holes, referred to as “popped” holes or “percussion drilled” holes, by repeatedly pulsing focused laser energy on a material. The diameter of these holes can be as small as 0.002”. If larger holes are required, the laser is moved around the circumference of the “popped” hole until the desired diameter is created.

<span class="mw-page-title-main">Ceramic nanoparticle</span>

Ceramic nanoparticle is a type of nanoparticle that is composed of ceramics, which are generally classified as inorganic, heat-resistant, nonmetallic solids that can be made of both metallic and nonmetallic compounds. The material offers unique properties. Macroscale ceramics are brittle and rigid and break upon impact. However, Ceramic nanoparticles take on a larger variety of functions, including dielectric, ferroelectric, piezoelectric, pyroelectric, ferromagnetic, magnetoresistive, superconductive and electro-optical.

In thermodynamics, explosive boiling or phase explosion is a method whereby a superheated metastable liquid undergoes an explosive liquid-vapor phase transition into a stable two-phase state because of a massive homogeneous nucleation of vapor bubbles. This concept was pioneered by M. M. Martynyuk in 1976 and then later advanced by Fucke and Seydel.

Nanoclusters are atomically precise, crystalline materials most often existing on the 0-2 nanometer scale. They are often considered kinetically stable intermediates that form during the synthesis of comparatively larger materials such as semiconductor and metallic nanocrystals. The majority of research conducted to study nanoclusters has focused on characterizing their crystal structures and understanding their role in the nucleation and growth mechanisms of larger materials.

References

  1. Dibner, [by] Herbert W. Meyer. Foreword by Bern (1972). A history of electricity and magnetism . Norwalk, Conn.: Burndy Library. p. 32. ISBN   026213070X.
  2. Holcombe, J.A.; Sacks, R.D. (March 16, 1973). "Exploding wire excitation for trace analysis of Hg, Cd, Pb and Ni using electrodeposition for preconcentration" (PDF). Spectrochimica Acta. 22B (12): 451–467. Bibcode:1973AcSpe..28..451H. doi:10.1016/0584-8547(73)80051-5. hdl: 2027.42/33764 . Retrieved 2 November 2014.
  3. 1 2 3 McGrath, J.R. (May 1966). "Exploding Wire Research 1774–1963". NRL Memorandum Report: 17. Archived from the original on November 29, 2014. Retrieved 24 October 2014.
  4. Hansen, Stephen (2011). Exploding Wires Principles, Apparatus and Experiments (PDF). Bell Jar. Retrieved 24 October 2014.
  5. 1 2 3 Kotov, Yu (2003). "Electric explosion of wires as a method for preparation of nanopowders" (PDF). Journal of Nanoparticle Research. 5 (5/6): 539–550. Bibcode:2003JNR.....5..539K. doi:10.1023/B:NANO.0000006069.45073.0b. S2CID   135540834. Archived from the original (PDF) on 2014-12-15.
  6. 1 2 3 Nazatenko, O (16 September 2007). "Nanopowders produced by electrical explosion of wires" (PDF). Dept. Of Exology Tomsk Polytechnic University. Archived from the original (PDF) on 29 November 2014. Retrieved 6 November 2014.
  7. Cooper, Paul W. (1996). "Exploding bridgewire detonators". Explosives Engineering. Wiley-VCH. pp. 353–367. ISBN   0-471-18636-8.
  8. Conn, William (October 28, 1949). "The Use of "Exploding Wires" as a Light Source of Very High Intensity and Short Duration". Journal of the Optical Society of America. 41 (7): 445–9. doi:10.1364/josa.41.000445. PMID   14851124 . Retrieved 30 October 2014.
  9. Anderson, J.A. (May 22, 1922). "The Spectral Energy Distribution And Opacity Of Wire Explosion Vapors". Proceedings of the National Academy of Sciences. 8 (7): 231–232. Bibcode:1922PNAS....8..231A. doi: 10.1073/pnas.8.7.231 . PMC   1085099 . PMID   16586882.
  10. Oster, Gisela K.; Marcus, R. A. (1957). "Exploding Wire as a Light Source in Flash Photolysis" (PDF). The Journal of Chemical Physics. 27 (1): 189. Bibcode:1957JChPh..27..189O. doi:10.1063/1.1743665.
  11. Mathur, Sanjay; Sing, Mrityunjay (2010). "Nanostructured Materials and Nanotechology III". Ceramic Engineering and Science Proceedings. 30 (7): 92. ISBN   9780470584361.
  12. Alqudami, Abdullah; Annapoorni, S. (2006). "Fluorescence from metallic silver and iron nanoparticles prepared by exploding wire technique". arXiv: cond-mat/0609369 .
  13. Boysen, Earl. "Nanoparticles Applications and Uses". understandingnano. Retrieved 2 November 2014.
  14. Oskam, Gerko (24 February 2006). "Metal oxide nanoparticles: synthesis, characterization and application". Journal of Sol-Gel Science and Technology. 37 (3): 161–164. doi:10.1007/s10971-005-6621-2. S2CID   98446250.
  15. Ginley, D. S. (October 1999). "Nanoparticle Derived Contacts for Photovoltaic Cells" (PDF). NREL. Retrieved July 10, 2023.