The Family with sequence similarity 149 member B1 is an uncharacterized protein [1] encoded by the human FAM149B1 gene, with one alias KIAA0974. [2] [3] The protein resides in the nucleus of the cell. The predicted secondary structure of the gene contains multiple alpha-helices, with a few beta-sheet structures. The gene is conserved in mammals, birds, reptiles, fish, and some invertebrates. The protein encoded by this gene contains a DUF3719 protein domain, which is conserved across its orthologues. [3] The protein is expressed at slightly below average levels in most human tissue types, with high expression in brain, kidney, and testes tissues, while showing relatively low expression levels in pancreas tissues. [4] [5]
This gene has a possible 14 exons. It is located on the forward strand of chromosome 10 at 10q22.2 on the positive strand. [6] The total span of the gene, including 5' and 3' UTR, is 3149 base pairs. The gene is flanked on the left by NUDT13 (nudix hydrolase 13) and on the right by DNAJC9-AS1 (DNAJC9 antisense RNA 1).
The FAM149B1 protein has a possible 10 isoforms, which are determined through alternative splicing of the gene.
Isoform Name | Accession | Exons | Length (bp) |
---|---|---|---|
Primary Transcript | NM_173348.1 | All (14) | 3149 |
X1 | XM_005269744.2 | All (14) | 3108 |
X2 | XM_011539737.2 | 13 | 2935 |
X3 | XM_005269745.2 | 13 | 3006 |
X4 | XM_017016164.1 | 12 | 2810 |
X5 | XM_017016165.1 | 11 | 2779 |
X6* | XM_017016166.1 | 9 | 2816 |
X6* | XM_005269747.3 | 9 | 2923 |
X7 | XM_017016167.1 | 9 | 1485 |
X8 | XM_011539740.2 | 9 | 1447 |
The primary protein encoded by the FAM149B1 gene is 583 amino acids in length and has a molecular weight of 64 kDal. The protein contains a conserved protein domain, DUF3719 [8] [6] located at the amino acids 115–179. The isoelectric point of the protein before post-translational modifications is 6.3, [9] and this isoelectric point is relatively conserved in the protein's isoforms, especially in those with the most similar composition of exons. This protein is considered serine rich, in that it expresses a higher serine composition relative to the composition of other human proteins. [10] [11] This high serine composition is also seen in the gene's orthologues.
The splice variants of the protein demonstrate some shared qualities of the protein that is translated from the primary transcript. Because each isoform is a different length and contains various combinations of the available exons, there are variances in the isoelectric point and molecular weight. The isoforms closest to the weight and exon composition to the primary transcript generally share these characteristics. The protein isoforms missing the conserved DUF3719 domain are isoforms X5 and X6 because this domain is contained between exons 3–6.
Isoform Name | Accession | Molecular Weight (kDal) | Length (aa) | Isoelectric point |
---|---|---|---|---|
Primary Transcript | NP_775483.1 | 64 | 582 | 6.3 |
X1 | XP_005269801.1 | 63.7 | 574 | 6.3 |
X2 | XP_011538039.1 | 62.6 | 560 | 7.5 |
X3 | XP_005269802.1 | 59.8 | 540 | 6.4 |
X4 | XP_016871653.1 | 57.8 | 518 | 7.7 |
X5 | XP_016871654.1 | 53 | 476 | 6.8 |
X6* | XP_016871655.1 | 46.6 | 419 | 7.5 |
X6* | XP_005269804.1 | 46.6 | 419 | 7.5 |
X7 | XP_016871656.1 | 41 | 368 | 5.1 |
X8 | XP_011538042.1 | 38 | 348 | 5.2 |
There is a negative charge cluster from amino acids 212 to 239. Negative charge clusters often coordinate calcium, or magnesium or zinc ions, mannose-binding protein, or aminopeptidase. [12] The protein contains no positive or mixed charge clusters. The secondary structure of the protein is predicted to be a combination of mostly alpha-helices with a few predicted beta-sheet structures.
The subcellular location of the protein is the nucleus. [13] There is a leucine zipper pattern in the protein beginning at amino acid 347. [14]
The third amino acid in the protein sequence, serine, is predicted to be acetylated. [15]
There are multiple predicted phosphorylation sites on various serine, tyrosine, and threonine amino acids are predicted for this protein sequence. [16] The conserved DUF3719 domain contains 7 predicted phosphorylation sites.
One predicted sumoylation site was identified in the protein sequence at K267. [17]
Overall in the human body, this gene is expressed at levels slightly below the average human gene expression level. [18] The protein is expressed in most cell types of the human body. [19] Most experimentation shows a higher expression of this protein in kidney, testes, and brain tissues, with very low expression seen in pancreas tissues. [4] [5] The gene is expressed at lower levels than its normal expression in most cancerous tissues. The gene is also seen to be expressed most highly in fetal and infantile tissues. [20]
DNA microarray analysis experiments show expression patterns of FAM149B1 compared to multiple other genes in a sample. FAM149B1 is shown to be at a lower expression level than most other genes in a multiple myeloma cell line and was shown to increase to close to average gene expression levels after the beta-catenin was depleted from the sample. [21]
FAM149B1 expression was also shown to decrease to lower than average gene expression levels in an ovarian cancer cell line after the use of an anticancer drug named NSC319726. [13]
The gene has nine different identified promoter regions, which correlate to the various isoforms of the gene. The promoter for the primary transcript of the gene has binding sites for a variety of different transcription factors.
Current data supports the FAM149B1 protein interactions with 6 different proteins.
One protein was determined to be an interacting protein with FAM149B1 through affinity chromatography techniques.
The other five proteins that have been predicted to interact with FAM149B1 protein were found through the process of textmining.
There is one known paralog, FAM149A. [27] It is located on the human chromosome 4 at 4q35.1. The function of the protein encoded by this gene is not well understood, but it also contains the DUF3719 protein domain. The protein translated by this gene shares a 21.2% identity [28] with the FAM149B1 protein. The protein sequence is 482 amino acids in length.
This gene has orthologues across mammals, birds, reptiles, fish, and some invertebrates. [3] There is a high conservation in mammals, moderate conservation in many of the other vertebrate orthologues, and a low conservation in its few invertebrate orthologues. [29] [28]
Genus species | Common Name | Time of Divergence (MYA) [30] | Accession Number | Length (aa) | Identity [28] | |
---|---|---|---|---|---|---|
1 | Homo sapiens | Human | - | NP_775483.1 | 582 | 100% |
2 | Pongo abelii | Sumatran orangutan | 15.76 | XP_009243761.1 | 587 | 93.0% |
3 | Papio anubis | Baboon | 29.4 | XP_003903829.1 | 582 | 93.6% |
4 | Mus musculus | Mouse | 90 | XP_006518391.1 | 544 | 73.5% |
5 | Bos mutus | Domestic Yak | 96 | XP_005910201.1 | 584 | 86.0% |
6 | Orcinus orca | Killer whale, Orca | 96 | XP_004273176.1 | 585 | 87.0% |
7 | Ailuropoda melanoleuca | Giant Panda | 96 | XP_011224744.1 | 590 | 82.7% |
8 | Orycteropus afer afer | Aardvark | 105 | XP_007938812.1 | 583 | 84.0% |
9 | Monodelphis domestica | Short-Tailed Opossum | 159 | XP_007478430.1 | 587 | 73.5% |
10 | Sarcophilus harrisii | Tasmanian Devil | 159 | XP_012396086.1 | 588 | 72.0% |
11 | Ornithorhynchus anatinus | Platypus | 177 | XP_007658720.1 | 506 | 48.1% |
12 | Gallus gallus | Chicken | 312 | XP_004942035.1 | 602 | 50.4% |
13 | Lepidothrix coronata | Blue-crowned manakin | 312 | XP_017688171.1 | 576 | 47.5% |
14 | Haliaeetus albicilla | White-tailed eagle | 312 | XP_009911204.1 | 589 | 49.4% |
15 | Falco peregrinus | Peregrine falcon | 312 | XP_005235226.1 | 597 | 49.2% |
16 | Chrysemys picta bellii | Western painted turtle | 312 | XP_008169104.1 | 596 | 56.1% |
17 | Pelodiscus sinensis | Chinese softshell turtle | 312 | XP_014433498.1 | 487 | 47.1% |
18 | Alligator mississippiensis | American alligator | 312 | XP_014464842.1 | 596 | 55.0% |
19 | Xenopus tropicalis | Western clawed frog | 352 | NP_001278638.1 | 561 | 39.8% |
20 | Danio rerio | Zebra fish | 435 | NP_001074134.1 | 644 | 37.7% |
21 | Lepisosteus oculatus | Spotted gar | 435 | XP_015202055.1 | 647 | 37.9% |
22 | Oreochromis niloticus | Nile tilapia | 435 | XP_005474333.1 | 683 | 34.3% |
23 | Callorhinchus milii | Australian ghostshark | 473 | XP_007897395.1 | 638 | 36.8% |
24 | Ciona intestinalis | Sea squirt | 676 | XP_002129894.1 | 807 | 24.5% |
25 | Aplysia californica | California sea slug | 797 | XP_012945921.1 | 312 | 16.9% |
While the gene is largely not well understood by scientists, it is shown to be associated with a wide range of various cancerous tumors. [31] [32]
The FAM149B1 gene is also included in a region of 11 genes that comprises one of 15 regions containing mutations associated with the African Pygmy phenotype. [33] [34]
PROSER2, also known as proline and serine rich 2, is a protein that in humans is encoded by the PROSER2 gene. PROSER2, or c10orf47(Chromosome 10 open reading frame 47), is found in band 14 of the short arm of chromosome 10 (10p14) and contains a highly conserved SARG domain. It is a fast evolving gene with two paralogs, c1orf116 and specifically androgen-regulated gene protein isoform 1. The PROSER2 protein has a currently uncharacterized function however, in humans, it may play a role in cell cycle regulation, reproductive functioning, and is a potential biomarker of cancer.
Chromosome 16 open reading frame 95 (C16orf95) is a gene which in humans encodes the protein C16orf95. It has orthologs in mammals, and is expressed at a low level in many tissues. C16orf95 evolves quickly compared to other proteins.
PRR29 is a protein encoded by the PRR29 gene located in humans on chromosome 17 at 17q23.
Uncharacterized protein Chromosome 16 Open Reading Frame 71 is a protein in humans, encoded by the C16orf71 gene. The gene is expressed in epithelial tissue of the respiratory system, adipose tissue, and the testes. Predicted associated biological processes of the gene include regulation of the cell cycle, cell proliferation, apoptosis, and cell differentiation in those tissue types. 1357 bp of the gene are antisense to spliced genes ZNF500 and ANKS3, indicating the possibility of regulated alternate expression.
FAM71F2 or Family with Sequence Similarity 71 member F2 is a protein that in humans is encoded by the Family with Sequence Similarity 71 member F2 gene. This gene is highly active in the reproductive tissues, specifically the testis, and may serve as a potential biomarker for determining metastatic testicular cancer.
Leukocyte Receptor Cluster Member 9 is an uncharacterized protein encoded by the LENG9 gene. In humans, LENG9 is predicted to play a role in fertility and reproductive disorders associated with female endometrium structures.
BEND2 is a protein that in humans is encoded by the BEND2 gene. It is also found in other vertebrates, including mammals, birds, and reptiles. The expression of BEND2 in Homo sapiens is regulated and occurs at high levels in the skeletal muscle tissue of the male testis and in the bone marrow. The presence of the BEN domains in the BEND2 protein indicates that this protein may be involved in chromatin modification and regulation.
CRACD-like protein. previously known as KIAA1211L is a protein that in humans is encoded by the CRACDL gene. It is highly expressed in the cerebral cortex of the brain. Furthermore, it is localized to the microtubules and the centrosomes and is subcellularly located in the nucleus. Finally, CRACDL is associated with certain mental disorders and various cancers.
FAM227A is a protein that in humans is encoded by FAM227A gene. Current studies have determined the location of this gene to be in the nuclear region of the cell. FAM227A is most highly expressed in the tissues of the fallopian tube, testis, and pituitary gland. FAM227A is present in species of mammals, birds and reptiles, and gene alignment sequences have shown that FAM227A is a rapidly evolving gene.
Chromosome 6 open reading frame 62 (C6orf62), also known as X-trans-activated protein 12 (XTP12), is a gene that encodes a protein of the same name. The encoded protein is predicted to have a subcellular location within the cytosol.
Chromosome 16 open reading frame 46 is a protein of yet to be determined function in Homo sapiens. It is encoded by the C16orf46 gene with NCBI accession number of NM_001100873. It is a protein-coding gene with an overlapping locus.
Chromosome 9 open reading frame 43 is a protein that in humans is encoded by the C9orf43 gene. The gene is also known as MGC17358 and LOC257169. C9orf43 contains DUF 4647 and a polyglutamine repeat region although protein function is not well understood.
C2orf81 is a human gene encoding protein c2orf81, which is predicted to have nuclear localization.
Chromosome 19 open reading frame 44 is a protein that in humans is encoded by the C19orf44 gene. C19orf44 is an uncharacterized protein with an unknown function in humans. C19orf44 is non-limiting implying that the protein exists in other species besides human. The protein contains one domain of unknown function (DUF) that is highly conserved throughout its orthologs. This protein is most highly expressed in the testis and ovary, but also has significant expression in the thyroid and parathyroid. Other names for this protein include: LOC84167.
Chromosome 1 open reading frame (C1orf167) is a protein which in humans is encoded by the C1orf167 gene. The NCBI accession number is NP_001010881. The protein is 1468 amino acids in length with a molecular weight of 162.42 kDa. The mRNA sequence was found to be 4689 base pairs in length.
C14orf180 is found on chromosome 14 in humans: 14q32.33. It consists of 1832 bp and 160 amino acids post translation. There is a total number of 6 exons. C14orf180 is also known as NRAC, C14orf77, and Chromosome 14 Open Reading Frame 180.
Chromosome 9 open reading frame 85, commonly known as C9orf85, is a protein in Homo sapiens encoded by the C9orf85 gene. The gene is located at 9q21.13. When spliced, four different isoforms are formed. C9orf85 has a predicted molecular weight of 20.17 kdal. Isoelectric point was found to be 9.54. The function of the gene has not yet been confirmed, however it has been found to show high levels of expression in cells of high differentiation.
FAM120AOS, or family with sequence similarity 120A opposite strand, codes for uncharacterized protein FAM120AOS, which currently has no known function. The gene ontology describes the gene to be protein binding. Overall, it appears that the thyroid and the placenta are the two tissues with the highest expression levels of FAM120AOS across a majority of datasets.
Chromosome 13 Open Reading Frame 46 is a protein which in humans is encoded by the C13orf46 gene. In humans, C13orf46 is ubiquitously expressed at low levels in tissues, including the lungs, stomach, prostate, spleen, and thymus. This gene encodes eight alternatively spliced mRNA transcript, which produce five different protein isoforms.
Secernin-3 (SCRN3) is a protein that is encoded by the human SCRN3 gene. SCRN3 belongs to the peptidase C69 family and the secernin subfamily. As a part of this family, the protein is predicted to enable cysteine-type exopeptidase activity and dipeptidase activity, as well as be involved in proteolysis. It is ubiquitously expressed in the brain, thyroid, and 25 other tissues. Additionally, SCRN3 is conserved in a variety of species, including mammals, birds, fish, amphibians, and invertebrates. SCRN3 is predicted to be an integral component of the cytoplasm.
{{cite web}}
: |last=
has generic name (help)