Fetuin

Last updated
X-ray picture of a Fetuin-A knockout mouse (-/-) compared to a wildtype mouse (+/+). The bright dots in the fetuin-A deficient mouse indicate calcified lesions throughout the body. FetuinAKnockout.jpg
X-ray picture of a Fetuin-A knockout mouse (-/-) compared to a wildtype mouse (+/+). The bright dots in the fetuin-A deficient mouse indicate calcified lesions throughout the body.

Fetuins are blood proteins that are made in the liver and secreted into the bloodstream. They belong to a large group of binding proteins mediating the transport and availability of a wide variety of cargo substances in the bloodstream. [1] Fetuin-A is a major carrier protein of free fatty acids in the circulation. [1] The best known representative of carrier proteins is serum albumin,[ citation needed ] the most abundant protein in the blood plasma of adult animals. Fetuin is more abundant in fetal blood, hence the name "fetuin" (from Latin, fetus). Fetal bovine serum contains more fetuin than albumin, while adult serum contains more albumin than fetuin.

Contents

Family members

Human fetuin is synonymous with α2-HS-glycoprotein (genetic symbol AHSG), α2-HS, A2HS, AHS, HSGA, and fetuin-A. Fetuin-A exists as a single-copy gene in the human and mouse genomes. A closely related gene, fetuin-B, also exists in the human, rat, and mouse genomes. Like fetuin-A, fetuin-B is made predominantly by the liver and to a lesser extent by a number of secretory tissues. Fetuins exist in all vertebrate genomes including fish and reptiles. Fetuins are members of a family of proteins that evolved from the protein cystatin by gene duplication and exchange of gene segments. Fetuins thus belong to the cystatin superfamily of proteins. Fetuin relatives within this superfamily are the histidine-rich glycoprotein (HRG) and kininogen (KNG).

Α2-HS-glycoprotein
Identifiers
Symbol AHSG
Alt. symbolsFETUA, A2HS, HSGA
NCBI gene 197
HGNC 349
OMIM 138680
RefSeq NM_001622
UniProt P02765
Other data
Locus Chr. 3 q27.3
Search for
Structures Swiss-model
Domains InterPro
fetuin-B
Identifiers
Symbol FETUB
Alt. symbols16G2, Gugu
NCBI gene 26998
HGNC 3658
OMIM 605954
RefSeq NM_014375
UniProt Q9UGM5
Other data
Locus Chr. 3 q27.3
Search for
Structures Swiss-model
Domains InterPro

Animal studies

The function of Fetuin-A in the body was determined by gene knockout technology in mice. Knocking out the gene for fetuin-A rendered the mice completely fetuin-A deficient. Feeding a mineral-rich diet to fetuin-A-deficient mice resulted in widespread calcification (ectopic mineralization) of lung, heart, and kidneys in these mice. The calcification became drastically exacerbated when the fetuin-A knockout was combined with the genetic background DBA/2. The mouse strain DBA/2 is known for its proneness to calcify damaged tissues, a process called "dystrophic calcification". Fetuin-A deficiency dramatically increased the calcification proneness of these mice in that all mice spontaneously calcified throughout their body even without a mineral-rich diet or surgical tissue trauma. Fetuin-A is therefore regarded as a potent inhibitor of systemic calcification.

Free fatty acids cause Fetuin-A overexpression by increasing the pro-inflammatory protein NF-κB. [1] Fetuin-A has been shown to facilitate the binding of free fatty acids to TLR4 receptors, thereby inducing insulin resistance in mice. [1]

Human studies

Fetuin-A was originally discovered to be an inhibitor of vascular calcification in early 1990s. Since then many more roles have been attributed to fetuin-A. Fetuin-A has been demonstrated to play an important role in free fatty acid induced insulin resistance in the liver. Increased fetuin-A in patients with pre-diabetes is associated with increased progression to diabetes and decreased reversal to normoglycemia. Hence fetuin-A is a predictor of adverse glycemic outcomes in pre-diabetes. [2] [ unreliable medical source ] Obese persons have elevated circulating Fetuin-A, which can be reduced by metformin, exercise, or weight loss. [3] Increased fetuin-A has also been linked to increased occurrence of non-alcoholic fatty liver disease and cardiovascular events, believed to be due to its proinflammatory effects. [4]

Fetuin-A in contrast has also been demonstrated to have anti-inflammatory properties. It is a negative acute-phase reactant in sepsis and endotoxemia, promotes wound healing, and is neuroprotective in Alzheimer's disease. Decreased fetuin-A is a predictor of increased disease activity in obstructive lung disease, Crohn's disease, and ulcerative colitis. Differential effects on different toll like receptors in different tissues and organ systems may explain these paradoxical effects in different systems. [5] [ unreliable medical source ]

Related Research Articles

Liver function tests, also referred to as a hepatic panel, are groups of blood tests that provide information about the state of a patient's liver. These tests include prothrombin time (PT/INR), activated partial thromboplastin time (aPTT), albumin, bilirubin, and others. The liver transaminases aspartate transaminase and alanine transaminase are useful biomarkers of liver injury in a patient with some degree of intact liver function. Most liver diseases cause only mild symptoms initially, but these diseases must be detected early. Hepatic (liver) involvement in some diseases can be of crucial importance. This testing is performed on a patient's blood sample. Some tests are associated with functionality, some with cellular integrity, and some with conditions linked to the biliary tract. Because some of these tests do not measure function, it is more accurate to call these liver chemistries or liver tests rather than liver function tests. Several biochemical tests are useful in the evaluation and management of patients with hepatic dysfunction. These tests can be used to detect the presence of liver disease. They can help distinguish among different types of liver disorders, gauge the extent of known liver damage, and monitor the response to treatment. Some or all of these measurements are also carried out on individuals taking certain medications, such as anticonvulsants, to ensure that these medications are not adversely impacting the person's liver.

<span class="mw-page-title-main">Lipolysis</span> Metabolism involving breakdown of lipids

Lipolysis is the metabolic pathway through which lipid triglycerides are hydrolyzed into a glycerol and free fatty acids. It is used to mobilize stored energy during fasting or exercise, and usually occurs in fat adipocytes. The most important regulatory hormone in lipolysis is insulin; lipolysis can only occur when insulin action falls to low levels, as occurs during fasting. Other hormones that affect lipolysis include glucagon, epinephrine, norepinephrine, growth hormone, atrial natriuretic peptide, brain natriuretic peptide, and cortisol.

<span class="mw-page-title-main">Transferrin</span> Mammalian protein found in Homo sapiens

Transferrins are glycoproteins found in vertebrates which bind and consequently mediate the transport of iron (Fe) through blood plasma. They are produced in the liver and contain binding sites for two Fe3+ ions. Human transferrin is encoded by the TF gene and produced as a 76 kDa glycoprotein.

<span class="mw-page-title-main">Adiponectin</span> Mammalian protein found in Homo sapiens

Adiponectin is a protein hormone and adipokine, which is involved in regulating glucose levels and fatty acid breakdown. In humans, it is encoded by the ADIPOQ gene and is produced primarily in adipose tissue, but also in muscle and even in the brain.

<span class="mw-page-title-main">Liver disease</span> Medical condition

Liver disease, or hepatic disease, is any of many diseases of the liver. If long-lasting it is termed chronic liver disease. Although the diseases differ in detail, liver diseases often have features in common.

<span class="mw-page-title-main">Serum albumin</span> Type of globular protein produced by the liver

Serum albumin, often referred to simply as blood albumin, is an albumin found in vertebrate blood. Human serum albumin is encoded by the ALB gene. Other mammalian forms, such as bovine serum albumin, are chemically similar.

In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride synthesis, with the latter being the process by which fatty acids are esterified to glycerol before being packaged into very-low-density lipoprotein (VLDL). Fatty acids are produced in the cytoplasm of cells by repeatedly adding two-carbon units to acetyl-CoA. Triacylglycerol synthesis, on the other hand, occurs in the endoplasmic reticulum membrane of cells by bonding three fatty acid molecules to a glycerol molecule. Both processes take place mainly in liver and adipose tissue. Nevertheless, it also occurs to some extent in other tissues such as the gut and kidney. A review on lipogenesis in the brain was published in 2008 by Lopez and Vidal-Puig. After being packaged into VLDL in the liver, the resulting lipoprotein is then secreted directly into the blood for delivery to peripheral tissues.

<span class="mw-page-title-main">Albumin</span> Family of globular proteins

Albumin is a family of globular proteins, the most common of which are the serum albumins. All of the proteins of the albumin family are water-soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumins are commonly found in blood plasma and differ from other blood proteins in that they are not glycosylated. Substances containing albumins are called albuminoids.

<span class="mw-page-title-main">Liver X receptor</span> Nuclear receptor

The liver X receptor (LXR) is a member of the nuclear receptor family of transcription factors and is closely related to nuclear receptors such as the PPARs, FXR and RXR. Liver X receptors (LXRs) are important regulators of cholesterol, fatty acid, and glucose homeostasis. LXRs were earlier classified as orphan nuclear receptors, however, upon discovery of endogenous oxysterols as ligands they were subsequently deorphanized.

<span class="mw-page-title-main">Free fatty acid receptor 1</span> Protein-coding gene in the species Homo sapiens

Free fatty acid receptor 1 (FFAR1), also known as G-protein coupled receptor 40 (GPR40), is a rhodopsin-like G-protein coupled receptor that is coded by the FFAR1 gene. This gene is located on the short arm of chromosome 19 at position 13.12. G protein-coupled receptors reside on their parent cells' surface membranes, bind any one of the specific set of ligands that they recognize, and thereby are activated to trigger certain responses in their parent cells. FFAR1 is a member of a small family of structurally and functionally related GPRs termed free fatty acid receptors (FFARs). This family includes at least three other FFARs viz., FFAR2, FFAR3, and FFAR4. FFARs bind and thereby are activated by certain fatty acids.

<span class="mw-page-title-main">Free fatty acid receptor 4</span> Protein-coding gene in the species Homo sapiens

Free Fatty acid receptor 4 (FFAR4), also termed G-protein coupled receptor 120 (GPR120), is a protein that in humans is encoded by the FFAR4 gene. This gene is located on the long arm of chromosome 10 at position 23.33. G protein-coupled receptors reside on their parent cells' surface membranes, bind any one of the specific set of ligands that they recognize, and thereby are activated to trigger certain responses in their parent cells. FFAR4 is a rhodopsin-like GPR in the broad family of GPRs which in humans are encoded by more than 800 different genes. It is also a member of a small family of structurally and functionally related GPRs that include at least three other free fatty acid receptors (FFARs) viz., FFAR1, FFAR2, and FFAR3. These four FFARs bind and thereby are activated by certain fatty acids.

alpha-2-HS-glycoprotein Protein-coding gene in the species Homo sapiens

alpha-2-HS-glycoprotein also known as fetuin-A is a protein that in humans is encoded by the AHSG gene. Fetuin-A belongs to the fetuin class of plasma binding proteins and is more abundant in fetal than adult blood.

<span class="mw-page-title-main">FABP1</span> Protein-coding gene in the species Homo sapiens

FABP1 is a human gene coding for the protein product FABP1. It is also frequently known as liver-type fatty acid-binding protein (LFABP).

<span class="mw-page-title-main">LECT2</span> Protein-coding gene in the species Homo sapiens

Leukocyte cell-derived chemotaxin-2 (LECT2) is a protein first described in 1996 as a chemotactic factor for neutrophils, i.e. it stimulated human neutrophils to move directionally in an in vitro assay system. The protein was detected in and purified from cultures of Phytohaemagglutinin-activated human T-cell leukemia SKW-3 cells. Subsequent studies have defined LECT2 as a hepatokine, i.e. a substance made and released into the circulation by liver hepatocyte cells that regulates the function of other cells: it is a hepatocyte-derived, hormone-like, signaling protein.

<span class="mw-page-title-main">HRASLS3</span> Protein-coding gene in the species Homo sapiens

Group XVI phospholipase A2 also commonly known as adipocyte phospholipase A2 (AdPLA) is an enzyme that in humans is encoded by the PLA2G16 gene. This enzyme has also been identified as PLA2G16, HRASLS3, HREV107, HREV107-3, MGC118754 or H-REV107-1 from studies on class II tumor suppression but not on its enzymatic properties. AdPLA is encoded by a 1.3 kilobase AdPLA messenger RNA and is an 18 kDa protein. It belongs to a superfamily of phospholipase A2 (PLA2) enzymes and is found primarily in adipose tissue. AdPLA regulates adipocyte lipolysis and release of fatty acids through a G-protein coupled pathway involving prostaglandin and EP3. It has also been reported to play a crucial role in the development of obesity in mouse models.

<span class="mw-page-title-main">Fetuin-B</span> Protein-coding gene in the species Homo sapiens

Fetuin-B is a protein that in humans is encoded by the FETUB gene.

The liver plays the major role in producing proteins that are secreted into the blood, including major plasma proteins, factors in hemostasis and fibrinolysis, carrier proteins, hormones, prohormones and apolipoprotein:

Lipotoxicity is a metabolic syndrome that results from the accumulation of lipid intermediates in non-adipose tissue, leading to cellular dysfunction and death. The tissues normally affected include the kidneys, liver, heart and skeletal muscle. Lipotoxicity is believed to have a role in heart failure, obesity, and diabetes, and is estimated to affect approximately 25% of the adult American population.

SERPIN A12

Serpin A12 is a glycoprotein that is a class A member of the serine protease inhibitor (serpin) family. In humans, Serpin A12 is encoded by the SERPINA12 gene.

Hepatokines are proteins produced by liver cells (hepatocytes) that are secreted into the circulation and function as hormones across the organism. Research is mostly focused on hepatokines that play a role in the regulation of metabolic diseases such as diabetes and fatty liver and include: Adropin, ANGPTL4, Fetuin-A, Fetuin-B, FGF-21, Hepassocin, LECT2, RBP4,Selenoprotein P, Sex hormone-binding globulin.

References

  1. 1 2 3 4 Pal D, Dasgupta S, Kundu R, Maitra S, Das G, Mukhopadhyay S, Ray S, Majumdar SS, Bhattacharya S (2012). "Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance" (PDF). Nature Medicine . 18 (8): 1279–1285. doi:10.1038/nm.2851. PMID   22842477. S2CID   888828.
  2. Dutta D, Mondal SA, Kumar M, Hasanoor Reza AH, Biswas D, Singh P, Chakrabarti S, Mukhopadhyay S (2014). "Serum fetuin-A concentration predicts glycaemic outcomes in people with prediabetes: a prospective study from eastern India". Diabet. Med. 31 (12): 1594–9. doi:10.1111/dme.12539. PMID   24975463. S2CID   8532064.
  3. Trepanowski JF, Mey J, Varady KA (2015). "Fetuin-A: a novel link between obesity and related complications". International Journal of Obesity . 39 (5): 734–741. doi:10.1038/ijo.2014.203. PMID   25468829. S2CID   24089111.
  4. Nascimbeni F, Romagnoli D, Ballestri S, Baldelli E, Lugari S, Sirotti V, Giampaoli V, Lonardo A (2018). "Do Nonalcoholic Fatty Liver Disease and Fetuin-A Play Different Roles in Symptomatic Coronary Artery Disease and Peripheral Arterial Disease?". Diseases. 6 (1): E17. doi: 10.3390/diseases6010017 . PMC   5871963 . PMID   29462898.
  5. Mukhopadhyay S, Mondal SA, Kumar M, Dutta D (2014). "Proinflammatory and antiinflammatory attributes of fetuin-a: a novel hepatokine modulating cardiovascular and glycemic outcomes in metabolic syndrome". Endocr Pract. 20 (12): 1345–51. doi:10.4158/EP14421.RA. PMID   25370330.

Further reading