Filamentous carbon

Last updated

Filamentous carbon is a carbon-containing deposit structure that refers to several allotropes of carbon, including carbon nanotubes, carbon nanofibers, and microcoils. [1] [2] [3] It forms from gaseous carbon compounds. [1] Filamentous carbon structures all contain metal particles. These are either iron, cobalt, or nickel or their alloys. Deposits of it also significantly disrupt synthesis gas methanation. [4] Acetylene is involved in a number of method of the production of filamentous carbon. The structures of filamentous carbon are mesoporous and on the micrometer scale in dimension. Most reactions that form the structures take place at or above 280 °C (536 °F).

Contents

Filamentous carbon's applications include cleaning up spills of crude oil and the creation of strong and lightweight composites. Filamentous carbon also has significantly different thermodynamic properties from graphite, another form of carbon. However, filamentous carbon partially consists of graphite sheets.

Properties

Filamentous carbon structures typically range between 10 and 500 nanometers in diameter. They are typically 10,000 nanometers (10 micrometers) long. They have a duplex structure. The outside of the structures is difficult to oxidize, but the core oxidizes more easily. A metal particle is typically located at the growing end of the structure, although it is sometimes found in the middle of it instead. Also, more than one filament can sometimes grow out of one metal particle. Filamentous carbon is either helical, straight, or twisted. [1] It contains graphite layers in a conical shape. [2] They planes of graphite located close to the interface between the carbon and the nickel atom in the filament are parallel to the interface. The filaments can also be hollow. [5]

Filamentous carbon has thermodynamic properties that are different from those of graphite. This is partially due to the fact that the structure of filamentous carbon is more disordered than the structure of graphite. Other theories on the difference in properties include that the deviation is based on the formation of an intermediate phase of carbides. This theory was proposed by De Bokx et al. and Manning et al.. However, it is unlikely if the central metal atom is nickel because in that case, since carbides decompose at 350 °C (662 °F), and carbides formation was not observed during such a reaction. [2]

A difference between the solubities of metal and filamentous carbon also allows carbon diffusion to occur. [2] When the allotrope engages in a gasification reaction below 600 °C (1,112 °F), the reaction's activation energy is approximately 178 kilojoules per mole. [4]

Filamentous carbon is mesoporous and has unusual textural properties. [6] It also has paramagnetic properties. [7] It also has a high level of mechanical strength. [8]

The nickel particles located in filamentous carbon that is grown in methane and hydrogen gas between 490 °C (914 °F) and 590 °C (1,094 °F) tend to be pear-shaped at the higher end of the temperature range. At higher temperatures, the metal particle becomes deformed. The length of the conic structure of the filaments also increases with temperature. When a copper and silica catalyst is exposed to methane and hydrogen at 927 °C (1,701 °F), hollow, long filamentous carbon structures were formed, and these also contained drops of metal. [9]

Biological properties

When the enzyme glucoamylase is situated on a ceramic surface coated with filamentous carbon, the enzyme's stability increases drastically. [10]

Occurrence

Filamentous carbon typically forms on metals, including iron, cobalt, and nickel. [1] Hydrogen is also required for filamentous carbon to form. [9] However, they also form on alloys of these metals. [6] Iron is a better material for forming filamentous carbon on than nickel is. [8] For instance, in the presence of methanol, at a pressure of 7 kilopascals and a temperature of 500 °C (932 °F), filamentous carbon grows on iron, but not nickel. [8] Formation of the material on those metals typically occurs at temperatures between 327 °C (621 °F) and 1,027 °C (1,881 °F). [1] It also forms when chromium is used as a catalyst to decompose acetylene. [11] Filamentous carbon is also one of up to seven allotropes of carbon to form during coke formation on reactor tubes and catalysts. The allotrope has the ability to destroy catalyst support structures, thus blocking reactors. It also forms during stream reforming, along with other varieties of carbon. [2]

Synthesis

Filamentous carbon can also be synthesized by cracking methane. The product is then gasified by hydrogen. In the experiment that discovered this, a nickel particle was used as the metal particle for the filament. The filament precipitates on the nickel particle's "support side". [2]

Filamentous carbon can also form when acetylene decomposes on films of palladium and silicon dioxide. However, filamentous carbon does not form on the palladium and silicon dioxide films if they are preheated with hydrogen at temperatures of 597 °C (1,107 °F). This is because in those conditions, the palladium and silicon dioxide react to form palladium silicide. Iron and silicon dioxide together also act as a catalyst for formation of the structures. Sometimes, iron silicate forms during this reaction. [12]

Another experiment showed that filamentous carbon can form when carbon monoxide is disproprionated over cobaltosic oxide. In the experiment, a heated carburizing gas mixture was sent over powdered cobaltosic oxide. Filamentous carbon is the main deposit that forms from this reaction when it is carried out at 600 °C (1,112 °F). [4]

When chlorobenzene is hydrodechlorinated over nickel and silica, highly ordered structures of filamentous carbon form. When potassium and bromine are present, this reaction can occur at temperatures as low as 280 °C (536 °F). This is because the potassium and bromine aided in restructuring the active sites, thus causing destructive chemisorption of the reactant and also causing the a precipitate of carbon to form. Adding potassium hydroxide to the mixture of nickel and silica in the reaction made little change to the yield of the reaction. However, the addition of potassium bromide significantly increased the yield. [13] Other alkali metal bromides also allow the reaction and the formation of filamentous carbon to occur. Such alkali metal bromides include cesium bromide. [14]

Filamentous carbon can also be synthesized by decomposing chromium carbide at 100 to 200 megapascals and 350 °C (662 °F) to 800 °C (1,470 °F). [15] It has also been formed with a catalyst of cobalt and aluminum phosphate at 2 megapascals and 220 °C (428 °F) to 240 °C (464 °F). The presence of ruthenium in this reaction lessens the yield of filamentous carbon. [16]

Applications

Filamentous carbon has been used to clean up oil spills. This works by the filaments bonding to crude oil. [17] It is also used in light-weight composite materials that must have strength at high temperatures. [18]

History

Filamentous carbon has been known since at least 1890, when P. and L. Schützenberger observed it while passing cyanogen over red-hot porcelain. [19] In the 1950s, it was discovered that the filaments could be produced by the reactions of gases such as hydrocarbons with metals such as iron, cobalt, and nickel. The first electron micrographs of tubular versions of the filaments appeared in 1952. [19] Between the 1970s and the 1990s, filamentous carbon has been the subject of a number of research efforts. These studies included studies of the thermodynamic properties of the formation of the allotrope. [2] The most significant study that took place during that time was conducted by Terry Baker in the 1970s and concerned keeping filamentous carbon from growing inside the cooling pipes of nuclear reactors. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Acetylene</span> Hydrocarbon compound (HC≡CH)

Acetylene is the chemical compound with the formula C2H2 and structure H−C≡C−H. It is a hydrocarbon and the simplest alkyne. This colorless gas is widely used as a fuel and a chemical building block. It is unstable in its pure form and thus is usually handled as a solution. Pure acetylene is odorless, but commercial grades usually have a marked odor due to impurities such as divinyl sulfide and phosphine.

<span class="mw-page-title-main">Carbon</span> Chemical element, symbol C and atomic number 6

Carbon is a chemical element; it has symbol C and atomic number 6. It is nonmetallic and tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 electrons. It belongs to group 14 of the periodic table. Carbon makes up about 0.025 percent of Earth's crust. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of about 5,730 years. Carbon is one of the few elements known since antiquity.

<span class="mw-page-title-main">Catalysis</span> Process of increasing the rate of a chemical reaction

Catalysis is the increase in rate of a chemical reaction due to an added substance known as a catalyst. Catalysts are not consumed by the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recycles quickly, very small amounts of catalyst often suffice; mixing, surface area, and temperature are important factors in reaction rate. Catalysts generally react with one or more reactants to form intermediates that subsequently give the final reaction product, in the process of regenerating the catalyst.

<span class="mw-page-title-main">Haber process</span> Industrial process for ammonia production

The Haber process, also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. The German chemists Fritz Haber and Carl Bosch developed it in the first decade of the 20th century. The process converts atmospheric nitrogen (N2) to ammonia (NH3) by a reaction with hydrogen (H2) using an iron metal catalyst under high temperatures and pressures. This reaction is slightly exothermic (i.e. it releases energy), meaning that the reaction is favoured at lower temperatures and higher pressures. It decreases entropy, complicating the process. Hydrogen is produced via steam reforming, followed by an iterative closed cycle to react hydrogen with nitrogen to produce ammonia.

<span class="mw-page-title-main">Austenite</span> Metallic, non-magnetic allotrope of iron or a solid solution of iron, with an alloying element

Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures. The austenite allotrope is named after Sir William Chandler Roberts-Austen (1843–1902). It exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.

<span class="mw-page-title-main">Tungsten carbide</span> Hard, dense and stiff chemical compound

Tungsten carbide is a chemical compound containing equal parts of tungsten and carbon atoms. In its most basic form, tungsten carbide is a fine gray powder, but it can be pressed and formed into shapes through sintering for use in industrial machinery, cutting tools, chisels, abrasives, armor-piercing shells and jewelry.

The Sonogashira reaction is a cross-coupling reaction used in organic synthesis to form carbon–carbon bonds. It employs a palladium catalyst as well as copper co-catalyst to form a carbon–carbon bond between a terminal alkyne and an aryl or vinyl halide.

The Fischer–Tropsch process (FT) is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

<span class="mw-page-title-main">Raney nickel</span> Chemical compound

Raney nickel, also called spongy nickel, is a fine-grained solid composed mostly of nickel derived from a nickel–aluminium alloy. Several grades are known, of which most are gray solids. Some are pyrophoric, but most are used as air-stable slurries. Raney nickel is used as a reagent and as a catalyst in organic chemistry. It was developed in 1926 by American engineer Murray Raney for the hydrogenation of vegetable oils. Raney is a registered trademark of W. R. Grace and Company. Other major producers are Evonik and Johnson Matthey.

An alkyne trimerisation is a [2+2+2] cycloaddition reaction in which three alkyne units react to form a benzene ring. The reaction requires a metal catalyst. The process is of historic interest as well as being applicable to organic synthesis. Being a cycloaddition reaction, it has high atom economy. Many variations have been developed, including cyclisation of mixtures of alkynes and alkenes as well as alkynes and nitriles.

<span class="mw-page-title-main">Boudouard reaction</span> Disproportionation of CO into CO2 and elemental carbon

The Boudouard reaction, named after Octave Leopold Boudouard, is the redox reaction of a chemical equilibrium mixture of carbon monoxide and carbon dioxide at a given temperature. It is the disproportionation of carbon monoxide into carbon dioxide and graphite or its reverse:

Nanomaterial-based catalysts are usually heterogeneous catalysts broken up into metal nanoparticles in order to enhance the catalytic process. Metal nanoparticles have high surface area, which can increase catalytic activity. Nanoparticle catalysts can be easily separated and recycled. They are typically used under mild conditions to prevent decomposition of the nanoparticles.

<span class="mw-page-title-main">Carbon nanofiber</span>

Carbon nanofibers (CNFs), vapor grown carbon fibers (VGCFs), or vapor grown carbon nanofibers (VGCNFs) are cylindrical nanostructures with graphene layers arranged as stacked cones, cups or plates. Carbon nanofibers with graphene layers wrapped into perfect cylinders are called carbon nanotubes.

Catalyst poisoning is the partial or total deactivation of a catalyst by a chemical compound. Poisoning refers specifically to chemical deactivation, rather than other mechanisms of catalyst degradation such as thermal decomposition or physical damage. Although usually undesirable, poisoning may be helpful when it results in improved catalyst selectivity. An important historic example was the poisoning of catalytic converters by leaded fuel.

In organic chemistry, the Kumada coupling is a type of cross coupling reaction, useful for generating carbon–carbon bonds by the reaction of a Grignard reagent and an organic halide. The procedure uses transition metal catalysts, typically nickel or palladium, to couple a combination of two alkyl, aryl or vinyl groups. The groups of Robert Corriu and Makoto Kumada reported the reaction independently in 1972.

<span class="mw-page-title-main">Organonickel chemistry</span> Branch of organometallic chemistry

Organonickel chemistry is a branch of organometallic chemistry that deals with organic compounds featuring nickel-carbon bonds. They are used as a catalyst, as a building block in organic chemistry and in chemical vapor deposition. Organonickel compounds are also short-lived intermediates in organic reactions. The first organonickel compound was nickel tetracarbonyl Ni(CO)4, reported in 1890 and quickly applied in the Mond process for nickel purification. Organonickel complexes are prominent in numerous industrial processes including carbonylations, hydrocyanation, and the Shell higher olefin process.

In nitrile reduction a nitrile is reduced to either an amine or an aldehyde with a suitable chemical reagent.

<span class="mw-page-title-main">Carbon nanotube supported catalyst</span> Novel catalyst using carbon nanotubes as the support instead of the conventional alumina

Carbon nanotube supported catalyst is a novel supported catalyst, using carbon nanotubes as the support instead of the conventional alumina or silicon support. The exceptional physical properties of carbon nanotubes (CNTs) such as large specific surface areas, excellent electron conductivity incorporated with the good chemical inertness, and relatively high oxidation stability makes it a promising support material for heterogeneous catalysis.

In materials science, vertically aligned carbon nanotube arrays (VANTAs) are a unique microstructure consisting of carbon nanotubes oriented with their longitudinal axis perpendicular to a substrate surface. These VANTAs effectively preserve and often accentuate the unique anisotropic properties of individual carbon nanotubes and possess a morphology that may be precisely controlled. VANTAs are consequently widely useful in a range of current and potential device applications.

<span class="mw-page-title-main">Heterogeneous gold catalysis</span>

Heterogeneous gold catalysis refers to the use of elemental gold as a heterogeneous catalyst. As in most heterogeneous catalysis, the metal is typically supported on metal oxide. Furthermore, as seen in other heterogeneous catalysts, activity increases with a decreasing diameter of supported gold clusters. Several industrially relevant processes are also observed such as H2 activation, Water-gas shift reaction, and hydrogenation. One or two gold-catalyzed reactions may have been commercialized.

References

  1. 1 2 3 4 5 "Filamentous Carbon". IUPAC Compendium of Chemical Terminology. 2009. doi:10.1351/goldbook.F02362. ISBN   978-0-9678550-9-7.
  2. 1 2 3 4 5 6 7 Snoeck, J.-W.; Froment, G. F.; Fowles, M. (1997). "Filamentous Carbon Formation and Gasification: Thermodynamics, Driving Force, Nucleation, and Steady-State Growth". Journal of Catalysis. 169 (1): 240–9. doi:10.1006/jcat.1997.1634.
  3. Thornton, Matthew James (2005). Catalytic carbon deposition on 3-dimensional carbon fibre supports (PhD thesis). University of Nottingham.[ page needed ]
  4. 1 2 3 Starkovich, J. A.; Lim, Wei-Yue; Peng, H. (1984). A Catalytic Reaction Model for Filamentous Carbon Gasification (PDF). Symposium on Catalytic Fuels Processing. pp. 89–94. Archived from the original (PDF) on 2017-04-28. Retrieved 2013-09-01.
  5. Li, Xiaonian; Zhang, Yi; Smith, Kevin J. (2004). "Metal–support interaction effects on the growth of filamentous carbon over Co/SiO2 catalysts". Applied Catalysis A: General. 264 (1): 81–91. doi:10.1016/j.apcata.2003.12.031.
  6. 1 2 Reshetenko, T. V.; Avdeeva, L. B.; Ismagilov, Z. R.; Pushkarev, V. V.; Cherepanova, S. V.; Chuvilin, A. L.; Likholobov, V. A. (2003). "Catalytic filamentous carbon". Carbon. 41 (8): 1605–15. doi: 10.1016/S0008-6223(03)00115-5 .
  7. Romanenko, Konstantin V.; d’Espinose De La Caillerie, Jean-Baptiste; Fraissard, Jacques; Reshetenko, Tatyana V.; Lapina, Olga B. (2005). "129Xe NMR investigation of catalytic filamentous carbon". Microporous and Mesoporous Materials. 81 (1–3): 41–8. doi:10.1016/j.micromeso.2005.01.016.
  8. 1 2 3 Debokx, P. (1985). "The formation of filamentous carbon on iron and nickel catalysts I. Thermodynamics". Journal of Catalysis. 96 (2): 454–67. doi:10.1016/0021-9517(85)90314-8.
  9. 1 2 Alstrup, I.; Tavares, M. T.; Bernardo, C. A.; Sørensen, O.; Rostrup-Nielsen, J. R. (1998). "Carbon formation on nickel and nickel-copper alloy catalysts". Materials and Corrosion. 49 (5): 367–72. doi:10.1002/(SICI)1521-4176(199805)49:5<367::AID-MACO367>3.0.CO;2-M. hdl: 1822/1533 .
  10. Kovalenko, G. A.; Kuvshinov, D. G.; Komova, O. V.; Simakov, A. V.; Rudina, N. A. (2004). "Catalytic Filamentous Carbons (CFC) and CFC-Coated Ceramics for Immobilization of Biologically Active Substances". In Guceri, Selcuk; Gogotsi, Yury G.; Kuznetsov, Vladimir (eds.). Nanoengineered Nanofibrous Materials. Dordrecht: Springer. pp. 265–70. ISBN   978-1-4020-2549-5.
  11. Baker, R. (1973). "Formation of filamentous carbon from iron, cobalt and chromium catalyzed decomposition of acetylene". Journal of Catalysis. 30 (1): 86–95. doi:10.1016/0021-9517(73)90055-9.
  12. Kępiński, L. (1989). "Formation of filamentous carbon from acetylene on Pd/SiO2 films: Effect of metal-support reaction". Reaction Kinetics and Catalysis Letters. 38 (2): 363–7. doi:10.1007/BF02062132. S2CID   100956295.
  13. Park, Colin; Keane, Mark A. (2001). "Filamentous Carbon Growth on Nickel/Silica: Potassium and Bromine as Catalyst Promotors". ChemPhysChem. 2 (12): 733–41. doi:10.1002/1439-7641(20011217)2:12<733::AID-CPHC733>3.0.CO;2-5. PMID   23686923.
  14. Park, Colin; Keane, Mark A. (2002). "Growth of Filamentous Carbon from the Surface of Ni/SiO2 Doped with Alkali Metal Bromides". Journal of Colloid and Interface Science. 250 (1): 37–48. Bibcode:2002JCIS..250...37P. doi:10.1006/jcis.2002.8298. PMID   16290632.
  15. Basavalingu, B.; Madhusudan, P.; Dayananda, A. S.; Lal, K.; Byrappa, K.; Yoshimura, M. (2007). "Formation of filamentous carbon through dissociation of chromium carbide under hydrothermal conditions". Journal of Materials Science. 43 (7): 2153–7. Bibcode:2008JMatS..43.2153B. doi:10.1007/s10853-007-1927-9. S2CID   136589375.
  16. Bae, Jong Wook; Kim, Seung-Moon; Park, Seon-Ju; Prasad, P. S. Sai; Lee, Yun-Jo; Jun, Ki-Won (2009). "Deactivation by Filamentous Carbon Formation on Co/Aluminum Phosphate during Fischer−Tropsch Synthesis". Industrial & Engineering Chemistry Research. 48 (6): 3228–33. doi:10.1021/ie801956t.
  17. "Filamentous Carbon Particles for Cleaning Oil Spills" . Retrieved September 2, 2013.[ unreliable source? ]
  18. Steinfeld, A.; Kirillov, V.; Kuvshinov, G.; Mogilnykh, Y.; Reller, A. (1997). "Production of filamentous carbon and hydrogen by solarthermal catalytic cracking of methane". Chemical Engineering Science. 52 (20): 3599–603. doi:10.1016/S0009-2509(97)00166-8.
  19. 1 2 3 Harris, Peter J. F. (2009). "Catalytically produced carbon nanotubes". Carbon Nanotube Science: Synthesis, Properties and Applications. Cambridge: Cambridge University Press. pp. 6–7. ISBN   978-0-521-82895-6.