In physics, a first-class constraint is a dynamical quantity in a constrained Hamiltonian system whose Poisson bracket with all the other constraints vanishes on the constraint surface in phase space (the surface implicitly defined by the simultaneous vanishing of all the constraints). To calculate the first-class constraint, one assumes that there are no second-class constraints, or that they have been calculated previously, and their Dirac brackets generated. [1]
First- and second-class constraints were introduced by Dirac ( 1950 , p. 136, 1964 , p. 17) as a way of quantizing mechanical systems such as gauge theories where the symplectic form is degenerate. [2] [3]
The terminology of first- and second-class constraints is confusingly similar to that of primary and secondary constraints, reflecting the manner in which these are generated. These divisions are independent: both first- and second-class constraints can be either primary or secondary, so this gives altogether four different classes of constraints.
Consider a Poisson manifold M with a smooth Hamiltonian over it (for field theories, M would be infinite-dimensional).
Suppose we have some constraints
for n smooth functions
These will only be defined chartwise in general. Suppose that everywhere on the constrained set, the n derivatives of the n functions are all linearly independent and also that the Poisson brackets
and
all vanish on the constrained subspace.
This means we can write
for some smooth functions — there is a theorem showing this; and
for some smooth functions .
This can be done globally, using a partition of unity. Then, we say we have an irreducible first-class constraint (irreducible here is in a different sense from that used in representation theory).
For a more elegant way, suppose given a vector bundle over , with -dimensional fiber . Equip this vector bundle with a connection. Suppose too we have a smooth section f of this bundle.
Then the covariant derivative of f with respect to the connection is a smooth linear map from the tangent bundle to , which preserves the base point. Assume this linear map is right invertible (i.e. there exists a linear map such that is the identity map) for all the fibers at the zeros of f. Then, according to the implicit function theorem, the subspace of zeros of f is a submanifold.
The ordinary Poisson bracket is only defined over , the space of smooth functions over M. However, using the connection, we can extend it to the space of smooth sections of f if we work with the algebra bundle with the graded algebra of V-tensors as fibers.
Assume also that under this Poisson bracket, (note that it's not true that in general for this "extended Poisson bracket" anymore) and on the submanifold of zeros of f (If these brackets also happen to be zero everywhere, then we say the constraints close off shell). It turns out the right invertibility condition and the commutativity of flows conditions are independent of the choice of connection. So, we can drop the connection provided we are working solely with the restricted subspace.
What does it all mean intuitively? It means the Hamiltonian and constraint flows all commute with each other on the constrained subspace; or alternatively, that if we start on a point on the constrained subspace, then the Hamiltonian and constraint flows all bring the point to another point on the constrained subspace.
Since we wish to restrict ourselves to the constrained subspace only, this suggests that the Hamiltonian, or any other physical observable, should only be defined on that subspace. Equivalently, we can look at the equivalence class of smooth functions over the symplectic manifold, which agree on the constrained subspace (the quotient algebra by the ideal generated by the f 's, in other words).
The catch is, the Hamiltonian flows on the constrained subspace depend on the gradient of the Hamiltonian there, not its value. But there's an easy way out of this.
Look at the orbits of the constrained subspace under the action of the symplectic flows generated by the f 's. This gives a local foliation of the subspace because it satisfies integrability conditions (Frobenius theorem). It turns out if we start with two different points on a same orbit on the constrained subspace and evolve both of them under two different Hamiltonians, respectively, which agree on the constrained subspace, then the time evolution of both points under their respective Hamiltonian flows will always lie in the same orbit at equal times. It also turns out if we have two smooth functions A1 and B1, which are constant over orbits at least on the constrained subspace (i.e. physical observables) (i.e. {A1,f}={B1,f}=0 over the constrained subspace)and another two A2 and B2, which are also constant over orbits such that A1 and B1 agrees with A2 and B2 respectively over the restrained subspace, then their Poisson brackets {A1, B1} and {A2, B2} are also constant over orbits and agree over the constrained subspace.
In general, one cannot rule out "ergodic" flows (which basically means that an orbit is dense in some open set), or "subergodic" flows (which an orbit dense in some submanifold of dimension greater than the orbit's dimension). We can't have self-intersecting orbits.
For most "practical" applications of first-class constraints, we do not see such complications: the quotient space of the restricted subspace by the f-flows (in other words, the orbit space) is well behaved enough to act as a differentiable manifold, which can be turned into a symplectic manifold by projecting the symplectic form of M onto it (this can be shown to be well defined). In light of the observation about physical observables mentioned earlier, we can work with this more "physical" smaller symplectic manifold, but with 2n fewer dimensions.
In general, the quotient space is a bit difficult to work with when doing concrete calculations (not to mention nonlocal when working with diffeomorphism constraints), so what is usually done instead is something similar. Note that the restricted submanifold is a bundle (but not a fiber bundle in general) over the quotient manifold. So, instead of working with the quotient manifold, we can work with a section of the bundle instead. This is called gauge fixing.
The major problem is this bundle might not have a global section in general. This is where the "problem" of global anomalies comes in, for example. A global anomaly is different from the Gribov ambiguity, which is when a gauge fixing doesn't work to fix a gauge uniquely, in a global anomaly, there is no consistent definition of the gauge field. A global anomaly is a barrier to defining a quantum gauge theory discovered by Witten in 1980.
What have been described are irreducible first-class constraints. Another complication is that Δf might not be right invertible on subspaces of the restricted submanifold of codimension 1 or greater (which violates the stronger assumption stated earlier in this article). This happens, for example in the cotetrad formulation of general relativity, at the subspace of configurations where the cotetrad field and the connection form happen to be zero over some open subset of space. Here, the constraints are the diffeomorphism constraints.
One way to get around this is this: For reducible constraints, we relax the condition on the right invertibility of Δf into this one: Any smooth function that vanishes at the zeros of f is the fiberwise contraction of f with (a non-unique) smooth section of a -vector bundle where is the dual vector space to the constraint vector space V. This is called the regularity condition.
First of all, we will assume the action is the integral of a local Lagrangian that only depends up to the first derivative of the fields. The analysis of more general cases, while possible is more complicated. When going over to the Hamiltonian formalism, we find there are constraints. Recall that in the action formalism, there are on shell and off shell configurations. The constraints that hold off shell are called primary constraints while those that only hold on shell are called secondary constraints.
Consider the dynamics of a single point particle of mass m with no internal degrees of freedom moving in a pseudo-Riemannian spacetime manifold S with metric g. Assume also that the parameter τ describing the trajectory of the particle is arbitrary (i.e. we insist upon reparametrization invariance). Then, its symplectic space is the cotangent bundle T*S with the canonical symplectic form ω.
If we coordinatize T * S by its position x in the base manifold S and its position within the cotangent space p, then we have a constraint
The Hamiltonian H is, surprisingly enough, H = 0. In light of the observation that the Hamiltonian is only defined up to the equivalence class of smooth functions agreeing on the constrained subspace, we can use a new Hamiltonian H '= f instead. Then, we have the interesting case where the Hamiltonian is the same as a constraint! See Hamiltonian constraint for more details.
Consider now the case of a Yang–Mills theory for a real simple Lie algebra L (with a negative definite Killing form η) minimally coupled to a real scalar field σ, which transforms as an orthogonal representation ρ with the underlying vector space V under L in (d− 1) + 1 Minkowski spacetime. For l in L, we write
as
for simplicity. Let A be the L-valued connection form of the theory. Note that the A here differs from the A used by physicists by a factor of i and g. This agrees with the mathematician's convention.
The action S is given by
where g is the Minkowski metric, F is the curvature form
(no is or gs!) where the second term is a formal shorthand for pretending the Lie bracket is a commutator, D is the covariant derivative
and α is the orthogonal form for ρ.
What is the Hamiltonian version of this model? Well, first, we have to split A noncovariantly into a time component φ and a spatial part A→. Then, the resulting symplectic space has the conjugate variables σ, πσ (taking values in the underlying vector space of , the dual rep of ρ), A→, π→A, φ and πφ. For each spatial point, we have the constraints, πφ=0 and the Gaussian constraint
where since ρ is an intertwiner
ρ ' is the dualized intertwiner
(L is self-dual via η). The Hamiltonian,
The last two terms are a linear combination of the Gaussian constraints and we have a whole family of (gauge equivalent)Hamiltonians parametrized by f. In fact, since the last three terms vanish for the constrained states, we may drop them.
In a constrained Hamiltonian system, a dynamical quantity is second-class if its Poisson bracket with at least one constraint is nonvanishing. A constraint that has a nonzero Poisson bracket with at least one other constraint, then, is a second-class constraint.
See Dirac brackets for diverse illustrations.
Before going on to the general theory, consider a specific example step by step to motivate the general analysis.
Start with the action describing a Newtonian particle of mass m constrained to a spherical surface of radius R within a uniform gravitational field g. When one works in Lagrangian mechanics, there are several ways to implement a constraint: one can switch to generalized coordinates that manifestly solve the constraint, or one can use a Lagrange multiplier while retaining the redundant coordinates so constrained.
In this case, the particle is constrained to a sphere, therefore the natural solution would be to use angular coordinates to describe the position of the particle instead of Cartesian and solve (automatically eliminate) the constraint in that way (the first choice). For pedagogical reasons, instead, consider the problem in (redundant) Cartesian coordinates, with a Lagrange multiplier term enforcing the constraint.
The action is given by
where the last term is the Lagrange multiplier term enforcing the constraint.
Of course, as indicated, we could have just used different, non-redundant, spherical coordinates and written it as
instead, without extra constraints; but we are considering the former coordinatization to illustrate constraints.
The conjugate momenta are given by
Note that we can't determine from the momenta.
The Hamiltonian is given by
We cannot eliminate at this stage yet. We are here treating as a shorthand for a function of the symplectic space which we have yet to determine and not as an independent variable. For notational consistency, define u1 = from now on. The above Hamiltonian with the pλ term is the "naive Hamiltonian". Note that since, on-shell, the constraint must be satisfied, one cannot distinguish, on-shell, between the naive Hamiltonian and the above Hamiltonian with the undetermined coefficient, = u1.
We have the primary constraint
We require, on the grounds of consistency, that the Poisson bracket of all the constraints with the Hamiltonian vanish at the constrained subspace. In other words, the constraints must not evolve in time if they are going to be identically zero along the equations of motion.
From this consistency condition, we immediately get the secondary constraint
This constraint should be added into the Hamiltonian with an undetermined (not necessarily constant) coefficient u2, enlarging the Hamiltonian to
Similarly, from this secondary constraint, we find the tertiary constraint
Again, one should add this constraint into the Hamiltonian, since, on-shell, no one can tell the difference. Therefore, so far, the Hamiltonian looks like
where u1, u2, and u3 are still completely undetermined.
Note that, frequently, all constraints that are found from consistency conditions are referred to as secondary constraints and secondary, tertiary, quaternary, etc., constraints are not distinguished.
We keep turning the crank, demanding this new constraint have vanishing Poisson bracket
We might despair and think that there is no end to this, but because one of the new Lagrange multipliers has shown up, this is not a new constraint, but a condition that fixes the Lagrange multiplier:
Plugging this into our Hamiltonian gives us (after a little algebra)
Now that there are new terms in the Hamiltonian, one should go back and check the consistency conditions for the primary and secondary constraints. The secondary constraint's consistency condition gives
Again, this is not a new constraint; it only determines that
At this point there are no more constraints or consistency conditions to check!
Putting it all together,
When finding the equations of motion, one should use the above Hamiltonian, and as long as one is careful to never use constraints before taking derivatives in the Poisson bracket then one gets the correct equations of motion. That is, the equations of motion are given by
Before analyzing the Hamiltonian, consider the three constraints,
Note the nontrivial Poisson bracket structure of the constraints. In particular,
The above Poisson bracket does not just fail to vanish off-shell, which might be anticipated, but even on-shell it is nonzero. Therefore, φ2 and φ3 are second-class constraints, while φ1 is a first-class constraint. Note that these constraints satisfy the regularity condition.
Here, we have a symplectic space where the Poisson bracket does not have "nice properties" on the constrained subspace. However, Dirac noticed that we can turn the underlying differential manifold of the symplectic space into a Poisson manifold using his eponymous modified bracket, called the Dirac bracket, such that this Dirac bracket of any (smooth) function with any of the second-class constraints always vanishes.
Effectively, these brackets (illustrated for this spherical surface in the Dirac bracket article) project the system back onto the constraints surface. If one then wished to canonically quantize this system, then one need promote the canonical Dirac brackets, [4] not the canonical Poisson brackets to commutation relations.
Examination of the above Hamiltonian shows a number of interesting things happening. One thing to note is that, on-shell when the constraints are satisfied, the extended Hamiltonian is identical to the naive Hamiltonian, as required. Also, note that λ dropped out of the extended Hamiltonian. Since φ1 is a first-class primary constraint, it should be interpreted as a generator of a gauge transformation. The gauge freedom is the freedom to choose λ, which has ceased to have any effect on the particle's dynamics. Therefore, that λ dropped out of the Hamiltonian, that u1 is undetermined, and that φ1 = pλ is first-class, are all closely interrelated.
Note that it would be more natural not to start with a Lagrangian with a Lagrange multiplier, but instead take r² − R² as a primary constraint and proceed through the formalism: The result would the elimination of the extraneous λ dynamical quantity. However, the example is more edifying in its current form.
Another example we will use is the Proca action. The fields are and the action is
where
and
and are canonical variables. The second-class constraints are
and
The Hamiltonian is given by
In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.
In mathematics, a quadric or quadric surface (quadric hypersurface in higher dimensions), is a generalization of conic sections (ellipses, parabolas, and hyperbolas). It is a hypersurface (of dimension D) in a (D + 1)-dimensional space, and it is defined as the zero set of an irreducible polynomial of degree two in D + 1 variables; for example, D = 1 in the case of conic sections. When the defining polynomial is not absolutely irreducible, the zero set is generally not considered a quadric, although it is often called a degenerate quadric or a reducible quadric.
Noether's theorem states that every continuous symmetry of the action of a physical system with conservative forces has a corresponding conservation law. This is the first of two theorems proven by mathematician Emmy Noether in 1915 and published in 1918. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries of physical space.
In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints. It is named after the mathematician Joseph-Louis Lagrange.
The calculus of variations is a field of mathematical analysis that uses variations, which are small changes in functions and functionals, to find maxima and minima of functionals: mappings from a set of functions to the real numbers. Functionals are often expressed as definite integrals involving functions and their derivatives. Functions that maximize or minimize functionals may be found using the Euler–Lagrange equation of the calculus of variations.
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In physics, Hamiltonian mechanics is a reformulation of Lagrangian mechanics that emerged in 1833. Introduced by Sir William Rowan Hamilton, Hamiltonian mechanics replaces (generalized) velocities used in Lagrangian mechanics with (generalized) momenta. Both theories provide interpretations of classical mechanics and describe the same physical phenomena.
In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.
In mathematics and classical mechanics, the Poisson bracket is an important binary operation in Hamiltonian mechanics, playing a central role in Hamilton's equations of motion, which govern the time evolution of a Hamiltonian dynamical system. The Poisson bracket also distinguishes a certain class of coordinate transformations, called canonical transformations, which map canonical coordinate systems into canonical coordinate systems. A "canonical coordinate system" consists of canonical position and momentum variables that satisfy canonical Poisson bracket relations. The set of possible canonical transformations is always very rich. For instance, it is often possible to choose the Hamiltonian itself as one of the new canonical momentum coordinates.
In Hamiltonian mechanics, a canonical transformation is a change of canonical coordinates (q, p) → that preserves the form of Hamilton's equations. This is sometimes known as form invariance. Although Hamilton's equations are preserved, it need not preserve the explicit form of the Hamiltonian itself. Canonical transformations are useful in their own right, and also form the basis for the Hamilton–Jacobi equations and Liouville's theorem.
The Gram–Charlier A series, and the Edgeworth series are series that approximate a probability distribution in terms of its cumulants. The series are the same; but, the arrangement of terms differ. The key idea of these expansions is to write the characteristic function of the distribution whose probability density function f is to be approximated in terms of the characteristic function of a distribution with known and suitable properties, and to recover f through the inverse Fourier transform.
In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,
In differential geometry, a field in mathematics, a Poisson manifold is a smooth manifold endowed with a Poisson structure. The notion of Poisson manifold generalises that of symplectic manifold, which in turn generalises the phase space from Hamiltonian mechanics.
In statistics and information theory, a maximum entropy probability distribution has entropy that is at least as great as that of all other members of a specified class of probability distributions. According to the principle of maximum entropy, if nothing is known about a distribution except that it belongs to a certain class, then the distribution with the largest entropy should be chosen as the least-informative default. The motivation is twofold: first, maximizing entropy minimizes the amount of prior information built into the distribution; second, many physical systems tend to move towards maximal entropy configurations over time.
In computational chemistry, a constraint algorithm is a method for satisfying the Newtonian motion of a rigid body which consists of mass points. A restraint algorithm is used to ensure that the distance between mass points is maintained. The general steps involved are: (i) choose novel unconstrained coordinates, (ii) introduce explicit constraint forces, (iii) minimize constraint forces implicitly by the technique of Lagrange multipliers or projection methods.
The Dirac bracket is a generalization of the Poisson bracket developed by Paul Dirac to treat classical systems with second class constraints in Hamiltonian mechanics, and to thus allow them to undergo canonical quantization. It is an important part of Dirac's development of Hamiltonian mechanics to elegantly handle more general Lagrangians; specifically, when constraints are at hand, so that the number of apparent variables exceeds that of dynamical ones. More abstractly, the two-form implied from the Dirac bracket is the restriction of the symplectic form to the constraint surface in phase space.
In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.
In quantum field theory, and in the significant subfields of quantum electrodynamics (QED) and quantum chromodynamics (QCD), the two-body Dirac equations (TBDE) of constraint dynamics provide a three-dimensional yet manifestly covariant reformulation of the Bethe–Salpeter equation for two spin-1/2 particles. Such a reformulation is necessary since without it, as shown by Nakanishi, the Bethe–Salpeter equation possesses negative-norm solutions arising from the presence of an essentially relativistic degree of freedom, the relative time. These "ghost" states have spoiled the naive interpretation of the Bethe–Salpeter equation as a quantum mechanical wave equation. The two-body Dirac equations of constraint dynamics rectify this flaw. The forms of these equations can not only be derived from quantum field theory they can also be derived purely in the context of Dirac's constraint dynamics and relativistic mechanics and quantum mechanics. Their structures, unlike the more familiar two-body Dirac equation of Breit, which is a single equation, are that of two simultaneous quantum relativistic wave equations. A single two-body Dirac equation similar to the Breit equation can be derived from the TBDE. Unlike the Breit equation, it is manifestly covariant and free from the types of singularities that prevent a strictly nonperturbative treatment of the Breit equation. In applications of the TBDE to QED, the two particles interact by way of four-vector potentials derived from the field theoretic electromagnetic interactions between the two particles. In applications to QCD, the two particles interact by way of four-vector potentials and Lorentz invariant scalar interactions, derived in part from the field theoretic chromomagnetic interactions between the quarks and in part by phenomenological considerations. As with the Breit equation a sixteen-component spinor Ψ is used.
In the ADM formulation of general relativity one splits spacetime into spatial slices and time, the basic variables are taken to be the induced metric, , on the spatial slice, and its conjugate momentum variable related to the extrinsic curvature, ,. These are the metric canonical coordinates.
Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.
We start from a Lagrangian derive the canonical momenta, postulate the naive Poisson brackets, and compute the Hamiltonian. For simplicity, one assumes that no second class constraints occur, or if they do, that they have been dealt with already and the naive brackets replaced with Dirac brackets. There remain a set of constraints [...]