Flux (disambiguation)

Last updated

Flux is a rate of flow through a surface or substance in physics, and has a related meaning in applied mathematics.

Contents

Flux may also refer to:

Science and technology

Biology and healthcare

Computing

Physics and engineering

Materials

  • Flux (metallurgy), a chemical reducing agent, flowing agent, or purifying agent enhancing success in soldering and like joining of metals
  • Ceramic flux, a substance which lowers the melting point and promotes glass formation in ceramic materials and glasses
    • Secondary flux, a substance which acts as a ceramic flux in combination with other materials or at higher temperatures

Something integrated over a surface

  • Electric flux, the electric field through a surface integrated over the surface's area
  • Luminous flux, luminous intensity integrated over solid angle. Used in photometry
  • Magnetic flux, magnetic field through a surface integrated over the surface's area
  • Radiant flux, the total power emitted by a source. Used in radiometry

Something per unit area

People with the name

Art and entertainment

Fictional characters

Literature

Music

Other uses in art and entertainment

Organizations

Other uses

See also

Related Research Articles

Circuit may refer to:

In physics and many other areas of science and engineering the intensity or flux of radiant energy is the power transferred per unit area, where the area is measured on the plane perpendicular to the direction of propagation of the energy. In the SI system, it has units watts per square metre (W/m2), or kg⋅s−3 in base units. Intensity is used most frequently with waves such as acoustic waves (sound), matter waves such as electrons in electron microscopes, and electromagnetic waves such as light or radio waves, in which case the average power transfer over one period of the wave is used. Intensity can be applied to other circumstances where energy is transferred. For example, one could calculate the intensity of the kinetic energy carried by drops of water from a garden sprinkler.

Flux describes any effect that appears to pass or travel through a surface or substance. Flux is a concept in applied mathematics and vector calculus which has many applications to physics. For transport phenomena, flux is a vector quantity, describing the magnitude and direction of the flow of a substance or property. In vector calculus flux is a scalar quantity, defined as the surface integral of the perpendicular component of a vector field over a surface.

<span class="mw-page-title-main">Electromagnetic induction</span> Production of voltage by a varying magnetic field

Electromagnetic or magnetic induction is the production of an electromotive force (emf) across an electrical conductor in a changing magnetic field.

<span class="mw-page-title-main">Magnetic flux</span> Surface integral of the magnetic field

In physics, specifically electromagnetism, the magnetic flux through a surface is the surface integral of the normal component of the magnetic field B over that surface. It is usually denoted Φ or ΦB. The SI unit of magnetic flux is the weber, and the CGS unit is the maxwell. Magnetic flux is usually measured with a fluxmeter, which contains measuring coils, and it calculates the magnetic flux from the change of voltage on the coils.

Resistance may refer to:

<span class="mw-page-title-main">Heat transfer</span> Transport of thermal energy in physical systems

Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species, either cold or hot, to achieve heat transfer. While these mechanisms have distinct characteristics, they often occur simultaneously in the same system.

Plasma diagnostics are a pool of methods, instruments, and experimental techniques used to measure properties of a plasma, such as plasma components' density, distribution function over energy (temperature), their spatial profiles and dynamics, which enable to derive plasma parameters.

Tracer may refer to:

<span class="mw-page-title-main">Solenoidal vector field</span> Vector field with zero divergence

In vector calculus a solenoidal vector field is a vector field v with divergence zero at all points in the field:

Hybrid may refer to:

<span class="mw-page-title-main">Ferrofluid</span> Special type of liquid which is attracted by poles of a magnet

Ferrofluid is a liquid that is attracted to the poles of a magnet. It is a colloidal liquid made of nanoscale ferromagnetic or ferrimagnetic particles suspended in a carrier fluid. Each magnetic particle is thoroughly coated with a surfactant to inhibit clumping. Large ferromagnetic particles can be ripped out of the homogeneous colloidal mixture, forming a separate clump of magnetic dust when exposed to strong magnetic fields. The magnetic attraction of tiny nanoparticles is weak enough that the surfactant's Van der Waals force is sufficient to prevent magnetic clumping or agglomeration. Ferrofluids usually do not retain magnetization in the absence of an externally applied field and thus are often classified as "superparamagnets" rather than ferromagnets.

Intensity may refer to:

<span class="mw-page-title-main">Cooktop</span> Device that applies heat to the base of cookware

A cooktop, stovetop or hob, is a device commonly used for cooking that is commonly found in kitchens and used to apply heat to the base of pans or pots. Cooktops are often found integrated with an oven into a kitchen stove but may also be standalone devices. Cooktops are commonly powered by gas or electricity, though oil or other fuels are sometimes used.

<span class="mw-page-title-main">Flux tube</span> Tube-like region of space with constant magnet flux along its length

A flux tube is a generally tube-like (cylindrical) region of space containing a magnetic field, B, such that the cylindrical sides of the tube are everywhere parallel to the magnetic field lines. It is a graphical visual aid for visualizing a magnetic field. Since no magnetic flux passes through the sides of the tube, the flux through any cross section of the tube is equal, and the flux entering the tube at one end is equal to the flux leaving the tube at the other. Both the cross-sectional area of the tube and the magnetic field strength may vary along the length of the tube, but the magnetic flux inside is always constant.

<span class="mw-page-title-main">Heat flux</span> Vector representing the energy passing through a given area per unit time

In physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density, heat-flow density or heat-flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m2). It has both a direction and a magnitude, and so it is a vector quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small.

This glossary of physics is a list of definitions of terms and concepts relevant to physics, its sub-disciplines, and related fields, including mechanics, materials science, nuclear physics, particle physics, and thermodynamics. For more inclusive glossaries concerning related fields of science and technology, see Glossary of chemistry terms, Glossary of astronomy, Glossary of areas of mathematics, and Glossary of engineering.

The index of physics articles is split into multiple pages due to its size.