Forest migration

Last updated
Beech forest Matra in winter Beech forest Matra in winter.jpg
Beech forest Mátra in winter

Forest migration is the movement of large seed plant dominated communities in geographical space over time.

Contents

The emphasis of forest migration is placed on the movement of the populations that make up the forest community. Though an individual tree is permanently fixed in a location, tree populations may migrate over the landscape through successful dispersal and establishment into new regions and/or a lack of regeneration in a portion of its previous habitat range over the course of generations. [1] Tree migration is controlled by two overlying forces: environmental suppression and dispersal capacity of the population by seed. [2] Though the true rate of forest expansion is difficult to quantify, efforts are being made to evaluate and predict past, current, and future rates and extents of forest movements.

Forces controlling forest migrations

Forest migration happens by the occurrence of two processes: population expansion into new habitat range and population retreat from historical habitat range. These processes are governed by two competing forces. [2] The positive force of forest migration, plant population expansion, is governed by the seed dispersal capacity of the tree species' population and seedling establishment success. The population expansion limiting force, negative force, is the suppression by the environment of species' success in an area. Suppression by the environment could include human land use, disturbance, unfulfilled species-specific resource needs, and/or climatic stress. [3] [4]

These two major forces compete and change through time causing advances and retreats in the borders of plant populations' regions. An advance in the range border of a tree population occurs when environmental suppressive forces beyond the historical range fall below the population's dispersal and establishment potential, thus allowing for seedling success in new territory. [5] This creates a 'leading edge' of the tree population habitat range.

Range border contractions occur when environmental suppressive forces increase to a point where seedling success is limited in the current range. Regeneration failure in a portion of a species' habitat range creates a lagging or 'trailing edge'. [1] Though dispersal and environmental suppressive forces continually act, a static range boundary may occur when there is no change in the rate of these two factors.

Zones within a plant population

There are three basic zones within each plant population; the reproductive core, the marginal establishment zone, and the outer seed shadow. [2] The reproductive core of the plant population is the area in which sexually mature parental plants are present. This is the established reproductive source that provides the positive force for the population's expansion. The second region is the marginal establishment zone. In this region, seeds are successful and plants establish. The plants in this region have yet to reach reproductive maturity, thus they do not contribute to the seed dispersal potential of the population. The final region is the seed shadow region. In this region, inflow of seeds from the reproductive core is occurring, but because of environmental conditions germination or seedling survival is repressed causing an absence of species representatives in this region. This region is controlled by the negative force of the environment to the extent of zero success of the population.[ citation needed ]

Rapid plant migration

There has been debate over how plant populations move under rapid climate change situations. [6] [7] This debate stems from an issue called "Reid's paradox of rapid plant migration". [6] After the last glacial period, tree species spread to recover the newly exposed land. Through studies, it was calculated that this expansion occurred faster than perceived possible. [8] The two explanations for this rapid movement of forest populations across the landscape that came to the forefront were the retention of low-density founder populations and long-distance migration. [6] [7] [9]

Retention of low-density founder populations

In this theory, small forest populations were retained within the affected region of the last glacial period. [7] The repopulation of this region, after the recession the glaciers, manifested as a relatively slow expansion outward of these retained populations. The expansion was mostly due to diffusion in a normal distribution from the reproductive core. The expansion of these populations was then dictated by the dispersal ability of the population. Through this process, waves of short distance expansion were seen over time as seeds dispersed, grew, matured, and set seed themselves. High rates of spread, similar to those obtained under the long-distance migration assumption, have been obtained with diffusion models incorporating low-density founder populations. [9]

Rapid long distance migration

In this theory, populations moved directly from the area unaffected by glacial movement to their present boundaries by rare, long distance, successful dispersals. [6] The movement of the population was dictated by rare events that occurred long distances from the parent population. These rare successes created their own parent populations, allowing for the subpopulation to disperse additional rare, long distance successes perpetuating the movement of the population. The distribution created by this kind of movement is described as a fat-tailed distribution. Though normal distribution, short distance expansion of each individual population still occurs, the overall expansion of the entire cluster of populations is determined by the long distance, rare events. This stretches the distribution due to increased weight at the extremes of the distribution. Long-distance migration is usually modeled using integro-difference equations with slowly decreasing dispersal kernels. [6]

Current climate change and its implications for forest migration

The Earth has entered another period of rapid climate change as a consequence of human's emissions of greenhouse gases. [10] Since the early 20th century, the global air and sea surface temperature has increased about 0.8 °C (1.4 °F), with about two-thirds of the increase occurring since 1980. [11] It is important to consider this statistic as being a global average. The effects of climate change may be highly heterogeneous over the landscape effecting different areas in different ways and magnitudes. The current climate change regime could have effects on the movement, persistence, and competition within and between plant communities. [7] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [ excessive citations ] Also, the fact that forests are major constituents of habitat raises concerns on the effects of forest movement on climate change and greenhouse gas risk factors. [16] Also some concern on the effects of forest migrations should be evaluated for wildlife because of the possibilities of forest fragmentations and extirpations.

It is important to consider that temperature is not the only relevant habitat change factor affected by climate change. Alterations in precipitation patterns, diurnal timing, seasonal intensity, and season length all can reduce the survivorship or reproductive ability of plant species by disrupting phenology and genetic fitness of the population. [17] [18]

The ability of plant species to track climate change will be valuable information in predicting the future health, stability, and function of the Earth's forests in the coming decades. If forest populations cannot successfully migrate in response to climate change, the consequences could include disrupted reproductive cycles, population fragmentation, genetic bottlenecking, and extirpation. [18] Knowledge of the genetic structure and phenotypic limits of plant species gives insight to the range of climatic shifts a species can endure before migration becomes necessary for a species to avoid climate change-induced extinction or extirpation. [22] [3]

Generally, ideal tree habitat ranges are moving poleward for many species. The capacity for species to migrate in response to the ideal biogeographic range shifts has been questioned, especially in the context of extensive habitat fragmentation which occurs in modern-day landscapes. [23]

Simulation models are presented which incorporate two factors, land use pattern and means of dispersal, to assess potential responses of forest species to climatic warming. [24] Study areas displayed a range of human influence on the landscape, from heavily forested areas to areas dominated by urbanization and agriculture. [25] [26] [27] [28] The effect of establishing corridors (greenways) through fragmented landscapes is also assessed.

Results indicate that many species may be unable to track shifts in climatically-controlled range limits, resulting in widespread disequilibrium between vegetation and climate. [5] A variety of mitigating options likely will be necessary to offset the negative consequences of climatic warming on biological diversity. [29] Land use planners and managers are encouraged to incorporate climate warming into long-term planning.[ citation needed ]

Human assistance in forest migration

As early as the late 1990s, foresters in the southern United States had realized that pines grew better in the seeding zones north of their historical ranges as a result of climate change. They modified their seedings practices accordingly. Early scientific studies of assisted migration of forests have shown that good results were obtained when tree species were migrated near their current range. Following this discovery, some provinces and states modified their tree seeding guidelines to reflect this reality. [30] Canadian policymakers feared that, if they did not set the assisted migration guidelines, the private sector would be tempted to do it on its own. [31]

The use of assisted migration has also been proposed as a mitigation tool in forest decline due to climate change. [14] [18] This process involves the movement and establishment of forest species in new areas in hopes they will colonize. [14] It is thought that if assisted migration is utilized in an organized manner, species could be saved by allowing for rapid movement across the landscape. This process has been debated for its advantages and disadvantages with the intent of using it in the most beneficial manner. Supporters of this tool focus on the benefits of saving tree species from extinction, while those who oppose the idea have the concern of introducing pest species into unexposed regions. Attention must also be paid to the genetic effects translocation of plants may have to the population and surrounding populations. [18] The possible problems associated with this process include founder effects, and the introduction of unadapted genotypes which could harm the fitness of surrounding populations.

A proposed aid to natural forest migration is the upkeep of intraspecific biodiversity. [14] [18] [21] Biodiversity within a species is an important factor in the ability of a population to adapt. This is both beneficial for population stability as climates change, as well as increasing the likelihood of progeny success in new areas outside the current range.

Forest migrations past, present and future

To gain knowledge about the effects current climate change will have on the Earth's forests, many researchers have looked to past examples to draw information. Many studies have investigated the movement of forest species across glacially disrupted areas in the early Holocene period. Some studies have utilized fossilized pollen analysis, while others have used molecular genetics. [6] [7] Overall, it is perceived that forests can and did alter their geographical distributions to populate land through time. [2] [6] [7] [12] [13] [14] [15] [16] [17] There is also strong evidence to support these movements were, in some cases, directional with respect to an outside force. [2] [6] [12] [13] [15]

Investigations are also taking place on current forest migration based on recent information. [13] [15] These studies are generally directed to the altitudinal shifts in forest species on mountains. The conclusion drawn from these studies is that forest populations are increasing in altitudes. This movement is strongly correlated to the current era of climate change. [15]

Lastly, much effort has been put forth to try to model and predict future fates of forest populations. [6] [7] [18] [19] The results of these efforts have been varied and, in many cases, inconclusive. The future of plant migrations has proven to be hard to predict. The many unknowns about the limits of population migration, phenotypic plasticity, genetic capacity, species interaction, and current climate change cause have complicated the issue, and have made modeling, at this point, difficult. [15] [17] [18] [20] Studies should be directed to gaining knowledge about adaptation genetics, phenotypic limits of ecotypes, and create models incorporating more relevant factors. [18]

Examples of natural forest species migration

Scandinavian tree species migration

Scandinavian species of Tilia , Picea , Fagus , and Quercus have moved in their distributions in the past 8,000 years. [12] Through fossilized pollen, it was found that Tilia and Quercus species moved significantly and directionally northward. Though Fagus and Picea populations did not expand directionally, they have grown in the Scandinavian range. The movement of Picea species in the past 1000 years has shown a strong connection to climate change through a model comparison.[ citation needed ]

Catalonia, Spain tree species elevation shifts

In the more recent past, there has been documentation of elevation shifts in distribution of many core forest tree species of Catalonia. [15] The populations of two tree species (European Beech, Fagus sylvatica ; and Holm Oak, Quercus ilex ) were evaluated in their dynamics over elevations through time. Generally, Holm Oak reside lower on mountain slopes than does European Beech. In the past fifty years an increase in temperature of 1.5 °C was seen in the tested mountain range. This rise in temperature altered the transpiration rates and is believed to be causing the area to become more arid. The change in local microclimate of the region seemed to favor the success of the Holm Oak population, causing it to rise in elevation invading the natural range of European Beech. European Birch ( Betula pendula ) has also elevated its range in altitude. The movements of these ranges are strongly linked to climate change, which has allowed for better establishment and success at higher latitudes.

Elevation rise in tree and shrub species in the Swedish Scandes

In 2002, it was found that saplings were occurring in elevations previously not seen. [13] Birch saplings were found at elevations between 1370 and 1410 m above sea level (a.s.l). In 1955 no seedlings of this species were found above 1095 m a.s.l. It was found that the populations of Picea abies had moved 240 m in elevation in the previous 50 years. Increases were also found in other regional tree and shrub species. The plants growing outside of the previous established range also have shown low injury rate, and signs of healthy growth. In addition to these increases in elevation the past century, increases in birch seed viability has been seen in a long-term study.[ citation needed ]

Examples of human-assisted forest species migration

Assisted migration of the western larch

In 2010, the Government of British Columbia implemented an assisted migration program to move the western larch to a new habitat in Northern British Columbia, about 1000 kilometers north of its current range. [32] This was the first assisted migration program for a North American tree. Research had shown that the western larch, the most productive of the three species of larch native to North America, [33] has no trouble growing in northern BC. This selected areas' climatic conditions are predicted to match the western larch's historical range by 2030. [31]

See also

Related Research Articles

<span class="mw-page-title-main">Edge effects</span> Ecological concept

In ecology, edge effects are changes in population or community structures that occur at the boundary of two or more habitats. Areas with small habitat fragments exhibit especially pronounced edge effects that may extend throughout the range. As the edge effects increase, the boundary habitat allows for greater biodiversity.

<span class="mw-page-title-main">Gene flow</span> Transfer of genetic variation from one population to another

In population genetics, gene flow is the transfer of genetic material from one population to another. If the rate of gene flow is high enough, then two populations will have equivalent allele frequencies and therefore can be considered a single effective population. It has been shown that it takes only "one migrant per generation" to prevent populations from diverging due to drift. Populations can diverge due to selection even when they are exchanging alleles, if the selection pressure is strong enough. Gene flow is an important mechanism for transferring genetic diversity among populations. Migrants change the distribution of genetic diversity among populations, by modifying allele frequencies. High rates of gene flow can reduce the genetic differentiation between the two groups, increasing homogeneity. For this reason, gene flow has been thought to constrain speciation and prevent range expansion by combining the gene pools of the groups, thus preventing the development of differences in genetic variation that would have led to differentiation and adaptation. In some cases dispersal resulting in gene flow may also result in the addition of novel genetic variants under positive selection to the gene pool of a species or population

<span class="mw-page-title-main">Biological dispersal</span> Movement of individuals from their birth site to a breeding site

Biological dispersal refers to both the movement of individuals from their birth site to their breeding site, as well as the movement from one breeding site to another . Dispersal is also used to describe the movement of propagules such as seeds and spores. Technically, dispersal is defined as any movement that has the potential to lead to gene flow. The act of dispersal involves three phases: departure, transfer, settlement and there are different fitness costs and benefits associated with each of these phases. Through simply moving from one habitat patch to another, the dispersal of an individual has consequences not only for individual fitness, but also for population dynamics, population genetics, and species distribution. Understanding dispersal and the consequences both for evolutionary strategies at a species level, and for processes at an ecosystem level, requires understanding on the type of dispersal, the dispersal range of a given species, and the dispersal mechanisms involved. Biological dispersal can be correlated to population density. The range of variations of a species' location determines expansion range.

<span class="mw-page-title-main">Habitat fragmentation</span> Discontinuities in an organisms environment causing population fragmentation.

Habitat fragmentation describes the emergence of discontinuities (fragmentation) in an organism's preferred environment (habitat), causing population fragmentation and ecosystem decay. Causes of habitat fragmentation include geological processes that slowly alter the layout of the physical environment, and human activity such as land conversion, which can alter the environment much faster and causes the extinction of many species. More specifically, habitat fragmentation is a process by which large and contiguous habitats get divided into smaller, isolated patches of habitats.

<span class="mw-page-title-main">Seed dispersal</span> Movement or transport of seeds away from the parent plant

In spermatophyte plants, seed dispersal is the movement, spread or transport of seeds away from the parent plant. Plants have limited mobility and rely upon a variety of dispersal vectors to transport their seeds, including both abiotic vectors, such as the wind, and living (biotic) vectors such as birds. Seeds can be dispersed away from the parent plant individually or collectively, as well as dispersed in both space and time. The patterns of seed dispersal are determined in large part by the dispersal mechanism and this has important implications for the demographic and genetic structure of plant populations, as well as migration patterns and species interactions. There are five main modes of seed dispersal: gravity, wind, ballistic, water, and by animals. Some plants are serotinous and only disperse their seeds in response to an environmental stimulus. These modes are typically inferred based on adaptations, such as wings or fleshy fruit. However, this simplified view may ignore complexity in dispersal. Plants can disperse via modes without possessing the typical associated adaptations and plant traits may be multifunctional.

<span class="mw-page-title-main">Disturbance (ecology)</span> Temporary change in environmental conditions that causes a pronounced change in an ecosystem

In ecology, a disturbance is a temporary change in environmental conditions that causes a pronounced change in an ecosystem. Disturbances often act quickly and with great effect, to alter the physical structure or arrangement of biotic and abiotic elements. A disturbance can also occur over a long period of time and can impact the biodiversity within an ecosystem.

<span class="mw-page-title-main">Species distribution</span> Geographical area in which a species can be found

Species distribution, or speciesdispersion, is the manner in which a biological taxon is spatially arranged. The geographic limits of a particular taxon's distribution is its range, often represented as shaded areas on a map. Patterns of distribution change depending on the scale at which they are viewed, from the arrangement of individuals within a small family unit, to patterns within a population, or the distribution of the entire species as a whole (range). Species distribution is not to be confused with dispersal, which is the movement of individuals away from their region of origin or from a population center of high density.

In landscape ecology, landscape connectivity is, broadly, "the degree to which the landscape facilitates or impedes movement among resource patches". Alternatively, connectivity may be a continuous property of the landscape and independent of patches and paths. Connectivity includes both structural connectivity and functional connectivity. Functional connectivity includes actual connectivity and potential connectivity in which movement paths are estimated using the life-history data.

<span class="mw-page-title-main">Wildlife corridor</span> Connecting wild territories for animals

A wildlife corridor, habitat corridor, or green corridor is an area of habitat connecting wildlife populations separated by human activities or structures. This allows an exchange of individuals between populations, which may help prevent the negative effects of inbreeding, and reduced genetic diversity that often occur within isolated populations. Corridors may also help facilitate the re-establishment of populations that have been reduced or eliminated due to random events. This may potentially moderate some of the worst effects of habitat fragmentation, whereas urbanization can split up habitat areas, causing animals to lose both their natural habitat and the ability to move between regions to access resources. Habitat fragmentation due to human development is an ever-increasing threat to biodiversity, and habitat corridors serve to manage its effects.

A genetic isolate is a population of organisms with little genetic mixing with other organisms within the same species due to geographic isolation or other factors that prevent reproduction. Genetic isolates form new species through an evolutionary process known as speciation. All modern species diversity is a product of genetic isolates and evolution.

<span class="mw-page-title-main">Effects of climate change on plant biodiversity</span>

Changes in long term environmental conditions that can be collectively coined climate change are known to have had enormous impacts on current plant biodiversity patterns; further impacts are expected in the future. Environmental conditions play a key role in defining the function and geographic distributions of plants, in combination with other factors, thereby modifying patterns of biodiversity. It is predicted that climate change will remain one of the major drivers of biodiversity patterns in the future. Climate change is thought to be one of several factors causing biodiversity loss, which is changing the distribution and abundance of many plants.

<span class="mw-page-title-main">Defaunation</span> Loss or extinctions of animals in the forests

Defaunation is the global, local, or functional extinction of animal populations or species from ecological communities. The growth of the human population, combined with advances in harvesting technologies, has led to more intense and efficient exploitation of the environment. This has resulted in the depletion of large vertebrates from ecological communities, creating what has been termed "empty forest". Defaunation differs from extinction; it includes both the disappearance of species and declines in abundance. Defaunation effects were first implied at the Symposium of Plant-Animal Interactions at the University of Campinas, Brazil in 1988 in the context of Neotropical forests. Since then, the term has gained broader usage in conservation biology as a global phenomenon.

<span class="mw-page-title-main">Dispersal vector</span> Transporters of biological dispersal units

A dispersal vector is an agent of biological dispersal that moves a dispersal unit, or organism, away from its birth population to another location or population in which the individual will reproduce. These dispersal units can range from pollen to seeds to fungi to entire organisms.

<span class="mw-page-title-main">Effects of climate change on ecosystems</span> How increased greenhouse gases are affecting wildlife

Climate change has adversely affected terrestrial and marine ecosystems, including tundras, mangroves, coral reefs, and caves. Increasing global temperature, more frequent occurrence of extreme weather, and rising sea level are examples of the most impactful effects of climate change. Possible consequences of these effects include species decline and extinction and overall significant loss of biodiversity, change within ecosystems, increased prevalence of invasive species, loss of habitats, forests converting from carbon sinks to carbon sources, ocean acidification, disruption of the water cycle, increased occurrence and severity of natural disasters like wildfires and flooding, and lasting effects on species adaptation.

The geographical limits to the distribution of a species are determined by biotic or abiotic factors. Core populations are those occurring within the centre of the range, and marginal populations are found at the boundary of the range.

<span class="mw-page-title-main">Assisted migration</span> Intentional transport of species to a different habitat

Assisted migration is "the intentional establishment of populations or meta-populations beyond the boundary of a species' historic range for the purpose of tracking suitable habitats through a period of changing climate...." It is therefore a nature conservation tactic by which plants or animals are intentionally moved to geographic locations better suited to their present or future habitat needs and climate tolerances — and to which they are unable to migrate or disperse on their own.

<span class="mw-page-title-main">Altitudinal migration</span>

Altitudinal migration is a short-distance animal migration from lower altitudes to higher altitudes and back. Altitudinal migrants change their elevation with the seasons making this form of animal migration seasonal. Altitudinal migration can be most commonly observed in species inhabiting temperate or tropical ecosystems. This behavior is commonly seen among avian species but can also be observed within other vertebrates and some invertebrates. It is commonly thought to happen in response to climate and food availability changes as well as increasingly due to anthropogenic influence. These migrations can occur both during reproductive and non-reproductive seasons.

<span class="mw-page-title-main">Migration (ecology)</span> Large-scale movement of members of a species to a different environment

Migration, in ecology, is the large-scale movement of members of a species to a different environment. Migration is a natural behavior and component of the life cycle of many species of mobile organisms, not limited to animals, though animal migration is the best known type. Migration is often cyclical, frequently occurring on a seasonal basis, and in some cases on a daily basis. Species migrate to take advantage of more favorable conditions with respect to food availability, safety from predation, mating opportunity, or other environmental factors.

Reid's Paradox of Rapid Plant Migration or Reid's Paradox, describes the observation from the paleoecological record that plant ranges shifted northward, after the last glacial maximum, at a faster rate than the seed dispersal rates commonly occur. Rare long-distance seed dispersal events have been hypothesized to explain these fast migration rates, but the dispersal vector(s) are still unknown. The plant species' geographic range expansion rates are compared to the actualistic rates of seed dispersal using mathematical models, and are graphically visualized using dispersal kernels. These observations made in the paleontological record, which inspired Reid's Paradox, are from fossilized remains of plant parts, including needles, leaves, pollen, and seeds, that can be used to identify past shifts in plant species' ranges.

<span class="mw-page-title-main">Assisted migration of forests in North America</span> Human-facilitated forest migration process

Assisted migration is the movement of populations or species by humans from one territory to another in response to climate change. This is the definition offered in a nontechnical document published by the United States Forest Service in 2023, suggesting that this form of climate adaptation "could be a proactive, pragmatic tool for building climate resilience in our landscapes."

References

  1. 1 2 Bell, David M.; Bradford, John B.; Lauenroth, William K. (February 2014). "Early indicators of change: divergent climate envelopes between tree life stages imply range shifts in the western United States: Early indications of tree range shift". Global Ecology and Biogeography. 23 (2): 168–180. doi:10.1111/geb.12109.
  2. 1 2 3 4 5 Sauer, J.D. 1988. Plant migration the dynamics of geographic patterning in seed plant species. University of California Press. Berkeley and Los Angeles, California.
  3. 1 2 Aubin, I.; Munson, A.d.; Cardou, F.; Burton, P.j.; Isabel, N.; Pedlar, J.h.; Paquette, A.; Taylor, A.r.; Delagrange, S.; Kebli, H.; Messier, C. (2016-02-23). "Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change". Environmental Reviews. 24 (2): 164–186. doi:10.1139/er-2015-0072. ISSN   1181-8700.
  4. Stohlgren, Thomas J.; Bachand, Richard R.; Onami, Yasuhiro; Binkley, Dan (1998). "Species-Environment Relationships and Vegetation Patterns: Effects of Spatial Scale and Tree Life-Stage". Plant Ecology. 135 (2): 215–228. doi:10.1023/A:1009788326991. ISSN   1385-0237. JSTOR   20050611. S2CID   21349288.
  5. 1 2 Zhu, Kai; Woodall, Christopher W.; Clark, James S. (March 2012). "Failure to migrate: lack of tree range expansion in response to climate change". Global Change Biology. 18 (3): 1042–1052. Bibcode:2012GCBio..18.1042Z. doi:10.1111/j.1365-2486.2011.02571.x. ISSN   1354-1013. S2CID   31248474.
  6. 1 2 3 4 5 6 7 8 9 Clark, J.S.; Fastie, C.; Hurtt, G.; Jackson, S.T.; Johnson, C.; King, G.A.; Lewis, M.; Lynch, J.; Pacala, S.; Prentice, C.; Schupp, E.W.; Webb III, T.; Wyckoff, P. (1998). "Reid's paradox of rapid plant migration". BioScience. 48 (1): 13–24. doi: 10.2307/1313224 . JSTOR   1313224.
  7. 1 2 3 4 5 6 7 McLachlan, J.S.; Clark, J.S.; Manos, P.S. (2005). "Molecular indicators of tree migration capacity under rapid climate change". Ecology. 86 (8): 2088–2098. doi:10.1890/04-1036. S2CID   3064162.
  8. Skellam, J.G. 1951. Random dispersal in theoretical populations. Biometrika. 38:196-218.
  9. 1 2 Roques, L.; Hamel, F.; Fayard, J.; Fady, B.; Klein, E.K. (2010). "Recolonisation by diffusion can generate increasing rates of spread". Theoretical Population Biology. 77 (3): 205–212. doi:10.1016/j.tpb.2010.02.002. PMID   20171975.
  10. "Warming of the climate system is unequivocal" p.2, IPCC, Climate Change 2013: The Physical Science Basis - Summary for Policymakers, Observed Changes in the Climate System, p. 2, in IPCC AR5 WG1 2013.
  11. America's Climate Choices. Washington, D.C.: The National Academies Press. 2011. p. 15. ISBN   978-0-309-14585-5. The average temperature of the Earth's surface increased by about 1.4 °F (0.8 °C) over the past 100 years, with about 1.0 °F (0.6 °C) of this warming occurring over just the past three decades.
  12. 1 2 3 4 Bradshaw, H.W.; Holmquist, B.H.; Crowling, S.A.; Sykes, M.T. (2000). "The effects of climate change on the distribution and management of Picea abies in southern Scandinavia". Can. J. For. Res. 30 (12): 1992–1998. doi:10.1139/cjfr-30-12-1992.
  13. 1 2 3 4 5 Kullman, L (2002). "Rapid recent range-margin rise of tree and shrub species in the Swedish Scandes". Journal of Ecology. 90: 68–77. doi: 10.1046/j.0022-0477.2001.00630.x . S2CID   84988639.
  14. 1 2 3 4 5 McLachlan, J.S.; Hellmann, J.J; Schwartz, M.W. (2007). "A framework for debate of assisted migration in an era of climate change". Conservation Biology. 21 (2): 297–302. doi: 10.1111/j.1523-1739.2007.00676.x . PMID   17391179. S2CID   1499707.
  15. 1 2 3 4 5 6 7 Peñuelas, J.; Ogaya, R.; Boada, M.; Jump, A.S. (2007). "Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift in European beech forest in Catalonia (NE Spain)". Ecography. 30 (6): 830–838. doi:10.1111/j.2007.0906-7590.05247.x. S2CID   55369608.
  16. 1 2 3 Pitelka, L.F. (1997). "Plant migration and climate change". American Scientist. 85 (5): 464. Bibcode:1997AmSci..85..464P.
  17. 1 2 3 4 Walther, G.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C; Fromentin, J.; Hoegh-Guldberg, O.; Bairein, F. (2002). "Ecological responses to recent climate change". Nature. 416 (6879): 389–395. Bibcode:2002Natur.416..389W. doi:10.1038/416389a. PMID   11919621. S2CID   1176350.
  18. 1 2 3 4 5 6 7 8 9 Aitken, S.N., S. Yeaman, J.A. Holliday, T. Wang, and S. Curtis-McLane. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications ISSN. 1:95-111.
  19. 1 2 Woodall, C.W.; Oswalt, C.M; Westfall, J.A.; Perry, C.H.; Nelson, M.D.; Finley, A.O. (2009). "An indicator of tree migration in forests of the eastern United States". Forest Ecology and Management. 257 (5): 1434–1444. doi:10.1016/j.foreco.2008.12.013.
  20. 1 2 Pearson, R.G. (2006). "Climate change and the migration capacity of species". Trends in Ecology & Evolution. 21 (3): 111–113. doi:10.1016/j.tree.2005.11.022. PMID   16701483.
  21. 1 2 Noss, R.F. (2001). "Beyond Kyoto: forest management in a time of rapid climate change". Conservation Biology. 15 (3): 578–590. doi:10.1046/j.1523-1739.2001.015003578.x. S2CID   2059159.
  22. Lande, R. (July 2009). "Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation". Journal of Evolutionary Biology. 22 (7): 1435–1446. doi: 10.1111/j.1420-9101.2009.01754.x . PMID   19467134.
  23. Miller, Kathryn M.; McGill, Brian J. (January 2018). "Land use and life history limit migration capacity of eastern tree species". Global Ecology and Biogeography. 27 (1): 57–67. doi:10.1111/geb.12671.
  24. Wang, Wen J.; Thompson, Frank R.; He, Hong S.; Fraser, Jacob S.; Dijak, William D.; Jones‐Farrand, Todd (July 2019). Chen, Han (ed.). "Climate change and tree harvest interact to affect future tree species distribution changes". Journal of Ecology. 107 (4): 1901–1917. doi: 10.1111/1365-2745.13144 . ISSN   0022-0477.
  25. Thom, Dominik; Rammer, Werner; Seidl, Rupert (January 2017). "Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions". Global Change Biology. 23 (1): 269–282. Bibcode:2017GCBio..23..269T. doi:10.1111/gcb.13506. PMC   5159623 . PMID   27633953.
  26. Serra-Diaz, Josep M.; Scheller, Robert M.; Syphard, Alexandra D.; Franklin, Janet (July 2015). "Disturbance and climate microrefugia mediate tree range shifts during climate change". Landscape Ecology. 30 (6): 1039–1053. doi:10.1007/s10980-015-0173-9. ISSN   0921-2973. S2CID   13997251.
  27. Serra-Diaz, Josep M.; Keenan, Trevor F.; Ninyerola, Miquel; Sabaté, Santiago; Gracia, Carlos; Lloret, Francisco (June 2013). "Geographical patterns of congruence and incongruence between correlative species distribution models and a process-based ecophysiological growth model". Journal of Biogeography. 40 (10): 1928–1938. doi:10.1111/jbi.12142. ISSN   0305-0270. S2CID   85019579.
  28. Liang, Yu; Duveneck, Matthew J.; Gustafson, Eric J.; Serra-Diaz, Josep M.; Thompson, Jonathan R. (January 2018). "How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change". Global Change Biology. 24 (1): e335–e351. Bibcode:2018GCBio..24E.335L. doi:10.1111/gcb.13847. PMID   29034990. S2CID   6029465.
  29. Dudney, Joan; Hobbs, Richard J.; Heilmayr, Robert; Battles, John J.; Suding, Katharine N. (November 2018). "Navigating Novelty and Risk in Resilience Management". Trends in Ecology & Evolution. 33 (11): 863–873. doi: 10.1016/j.tree.2018.08.012 . PMID   30268524. S2CID   52894402.
  30. Williams, Mary I.; Dumroese, R. Kasten (2014). "Assisted Migration: What It Means to Nursery Managers and Tree Planters" (PDF). Tree Planters' Notes. 57 (1): 21–26.
  31. 1 2 Klenk, Nicole L. (2015-03-01). "The development of assisted migration policy in Canada: An analysis of the politics of composing future forests". Land Use Policy. 44: 101–109. doi:10.1016/j.landusepol.2014.12.003. ISSN   0264-8377.
  32. Buranyi, Stephen (20 January 2016). "Motherboard". www.vice.com. Archived from the original on 2016-04-29. Retrieved 2021-02-20.
  33. Rehfeldt, Gerald E.; Jaquish, Barry C. (March 2010). "Ecological impacts and management strategies for western larch in the face of climate-change". Mitigation and Adaptation Strategies for Global Change. 15 (3): 283–306. doi:10.1007/s11027-010-9217-2. ISSN   1381-2386. S2CID   154285038.

Works cited

Further reading