Country of origin | Germany |
---|---|
Introduced | 1941 |
Type | Identification Friend or Foe (IFF) |
FuG 25a Erstling (German: "Firstborn", "Debut", sometimes FuGe) was an identification friend or foe (IFF) transponder installed in Luftwaffe aircraft starting in 1941 in order to allow German Freya radar stations to identify them as friendly. The system was also used as a navigation transponder as part of the EGON night bombing system during 1943 and 1944. It was the second German IFF system to be used, replacing the FuG 25 Zwilling.
The basic concept of IFF had been introduced in November 1938 but little work was carried out on it initially. In 1939 the Würzburg radar was chosen to replace an earlier fire control radar from Lorenz. This led to the Zwilling, which responded to the Würzburg signals. Meanwhile, the GEMA company introduced the long-range Freya radar and a more advanced IFF system to work with it. This Erstling unit was clearly superior to the Zwilling, but 10,000 Zwilling units had been produced and they were slow to abandon it. Starting in July 1942, the Würzburg units were equipped with a separate Kuh unit that broadcast pulses on Freya's 2.5 m band, allowing them to work with Erstling.
In theory, Erstling was more secure than its Allied IFF Mark III counterpart, as it responded with a morse code signal that changed day-to-day. In practice, the resulting complexity of the system was so great that it often did not work, and flak troops came to distrust it. By 1943, the use of IFF in Germany was highly confused due to the proliferating number of radar units, Allied jamming, and the fear among the pilots that the Allies were using IFF signals to track their aircraft. Attempts were made to replace Erstling on several occasions, but the chaotic nature of the late-war signals efforts meant the favoured FuG 226 Neuling never reached operational status.
The Royal Air Force did, eventually, use the Erstling signals to track German aircraft. After a Junkers Ju 88 night fighter landed in Scotland in 1943, they were able to reverse engineer the Erstling and introduced the Perfectos system to trigger it. The signals were superimposed on existing radar displays, allowing the Perfectos operator to measure both the direction and range to the Erstling-equipped aircraft. When night fighter losses suddenly spiked, German pilots were told to turn their Erstling units off, leading to friendly fire incidents.
The basic system consisted of a transmitter/receiver, a "keying unit" to provide a secure day code, an integrated power supply, and a control panel. The power supply was fed by the aircraft's 24 VDC main power, driving a DC motor and alternator that produced 18 VAC 134 Hz output. This was used to power the electronics as well as a motor that drove the keying unit. The vacuum tube heater filaments were driven by the 24 VDC.
The receiver unit was an eight-tube superheterodyne design that was widely sensitive to the 2.4 m band. A 3000 RPM motor drove a tuning capacitor through the Freya range from 123 to 128 MHz, sweeping up and then down the band over a period of 10 ms. The Freya normally used a pulse repetition frequency (PRF) of 500 Hz, so during the 10 ms period, the radar would broadcast five pulses, and given that it was sweeping up and down, the receiver would be tuned to the right frequency during perhaps two of those pulses. The result was a series of pulses of the intermediate frequency turning on and off at about 200 Hz.
This output is used to modulate the transmitter unit. This has two effects. One is that the Erstling transmitter broadcasts a similar pattern of pulses on a selected frequency between 150 and 160 MHz, normally 156 MHz. These are received by a separate receiver at the radar stations, which output the 200 Hz low-frequency audible tone when received. The transmission output also damps down the receiver sensitivity for a short period so other pulses will not be received. This later system means the system will only output a signal for powerful sources, damping down weaker pulses from more distant sources. A small part of the transmitted signal is siphoned off on the way to the antenna and used to light a neon lamp on the instrument panel in the aircraft, indicating that the system was responding to an interrogation, not just receiving it.
Between the receiver and transmitter is the keying unit. This consisted of two sets of motorized cam switches with ten cams on each shaft. The cams were engaged by two long keys that were inserted into the keying unit, selecting among a set of 1,000 possible patterns. The keys were inserted on the ground and could not be changed in flight, but a switch on the front panel selected which of the two patterns to use. The shafts completed a revolution in about 1+1⁄2 seconds, alternately allowing the 200 Hz signal through to the transmitter or blocking it. The end result was to reproduce a 10-bit morse code signal when interrogated.
At the Freya site, received signals were sent to a separate unit that filtered low frequency signals into a set of headphones. The radar operator could then listen to the code while the interrogation button was held down. The codes were changed every day, which provided considerable security.
The FuG 25a had been designed to work only with the Freya radar, while other IFF units were being designed to provide a signal for the Würzburg units. These used a different system where the receiver was set to trigger the transmitter when the PRF of the interrogator changed from the Würzburg's normal 3,750 Hz to 5,000 Hz. The system was never made to work correctly, and by 1942 as the tempo of night fighter operations began to rapidly increase, an expedient solution was needed.
This came in the form of the Q-Gerät or Kuh (German for "cow") transmitter and Gämse (German for "chamois") receiver. The Kuh was a simple system that broadcast low-power signals similar to that of a Freya when triggered by the IFF switch on the Würzburg it was connected to, while the Gämse was an equally simple receiver turned to 156 MHz and then to the same filter as the Freya receiver. Thus when the operator pressed the interrogate button they heard the same signal as they would on the Freya.
British intelligence learned of the FuG 25 quite early-on and had published a report on the topic in 1943. At the time, there were only six units known to have been completed. Rennie Whitehead, who led the design of the British IFF Mark III, read the report and asked if there were circuit diagrams available. Instead, he was handed one of the units. A short time later, he was presented with a second unit. It was revealed that this unit had come from an operational German aircraft. In a fit of bravado, the pilot decided to show off by flying aerobatics just off the English coast. This ended when he crashed his aircraft into the coastline, which led to the FuG being ejected from the aircraft and landing in a bush unharmed.
That same year, the Luftwaffe began a low-intensity bombing effort against England. These raids sent up about sixty aircraft, but it was obvious from the start they were being led by a much smaller number of pathfinder aircraft dropping flares. At one of A.P. Rowe's "Sunday Soviets", Whitehead suggested that they might be using the FuG as a navigation tool, which would explain why no radio beam could be detected. While jamming such a signal would be easy by sending out pulses on the known frequency, Whitehead suggested instead that they modify their ground controlled interception radars to trigger the unit, which would make the pathfinder aircraft immediate stand out on the radar display. A small force of night fighters would also be equipped with an IFF Mark III modified to the same frequencies, so they would also be easy to identify.
This plan, which was christened "Red Queen", took two weeks to bring to fruition. The first operations were not highly effective, but as everyone became more familiar with the system, the effectiveness shot up. Because the radar now filtered out returns from any of the other bombers, as well as other British aircraft in the area, it became a trivial matter for the operators to guide the specially selected Mosquitos directly at the German pathfinders, quickly shooting down half of them. This resulted in the raids being thrown into disarray, and replacement pathfinders were shot down as soon as they arrived. The entire effort was called off after six ineffectual weeks.
The failure of the 1943 bombing raids meant that the FuG was once again being used primarily over Germany. In the summer of 1944, the first British Mosquito aircraft were equipped with the "Perfectos", a device that activated the FuG 25a and triggered the response in synchronicity with their own radar signal transmissions. This produced an additional blip on the radar display, which allowed the operators to immediately pick out the German night fighters.
When night fighter losses suddenly shot up, the Germans quickly realized that the FuG 25a had been compromised. The crews were told to leave the system turned off until they approached their bases, [1] where local anti-aircraft batteries would have no problems shooting them down while they flew slowly at low altitude. Of course, tired crews landing at night often forgot to turn the system back on, and a number of German night fighters were shot down by German flak forces. [2]
FuG 25z | FuG 25a | |
Reception frequencies | 560 MHz | 125 ±8 MHz |
Transmission frequencies | 560 MHz | 156 MHz |
Transmission power | unknown | 400 W (PEP) |
Current | 4 A DC | 4 A DC |
Power supply | 24 V DC | 24 V DC |
Weight | 11 kg | 17 kg |
Tubes | 6xRV12P2000, 1xLD1 | 7xRV12P2000, 1xRG12D60, 2xLD1, 1xLS50. |
Range | 72 km (40 miles | roughly 80% of visual range, max. 270 km (150 miles) |
The Luftwaffe was known for fitting sensitive devices like "Erstling" with small explosive charges to allow their destruction in order to avoid capture. A short fuse allowed the crew to reach a minimum safe distance.
Identification, friend or foe (IFF) is a combat identification system designed for command and control. It uses a transponder that listens for an interrogation signal and then sends a response that identifies the broadcaster. IFF systems usually use radar frequencies, but other electromagnetic frequencies, radio or infrared, may be used. It enables military and civilian air traffic control interrogation systems to identify aircraft, vehicles or forces as friendly, as opposed to neutral or hostile, and to determine their bearing and range from the interrogator. IFF is used by both military and civilian aircraft. IFF was first developed during World War II, with the arrival of radar, and several friendly fire incidents.
In aviation, distance measuring equipment (DME) is a radio navigation technology that measures the slant range (distance) between an aircraft and a ground station by timing the propagation delay of radio signals in the frequency band between 960 and 1215 megahertz (MHz). Line-of-visibility between the aircraft and ground station is required. An interrogator (airborne) initiates an exchange by transmitting a pulse pair, on an assigned 'channel', to the transponder ground station. The channel assignment specifies the carrier frequency and the spacing between the pulses. After a known delay, the transponder replies by transmitting a pulse pair on a frequency that is offset from the interrogation frequency by 63 MHz and having specified separation.
The Naxos radar warning receiver was a World War II German countermeasure to S band microwave radar produced by a cavity magnetron. Introduced in September 1943, it replaced Metox, which was incapable of detecting centimetric radar. Two versions were widely used, the FuG 350 Naxos Z that allowed night fighters to home in on H2S radars carried by RAF Bomber Command aircraft, and the FuMB 7 Naxos U for U-boats, offering early warning of the approach of RAF Coastal Command patrol aircraft equipped with ASV Mark III radar. A later model, Naxos ZR, provided warning of the approach of RAF night fighters equipped with AI Mk. VIII radar.
Freya was an early warning radar deployed by Germany during World War II; it was named after the Norse goddess Freyja. During the war, over a thousand stations were built. A naval version operating on a slightly different wavelength was also developed as the Seetakt.
The low-UHF band Würzburg radar was the primary ground-based tracking radar for the Wehrmacht's Luftwaffe and Kriegsmarine during World War II. Initial development took place before the war and the apparatus entered service in 1940. Eventually, over 4,000 Würzburgs of various models were produced. It took its name from the city of Würzburg.
The history of radar started with experiments by Heinrich Hertz in the late 19th century that showed that radio waves were reflected by metallic objects. This possibility was suggested in James Clerk Maxwell's seminal work on electromagnetism. However, it was not until the early 20th century that systems able to use these principles were becoming widely available, and it was German inventor Christian Hülsmeyer who first used them to build a simple ship detection device intended to help avoid collisions in fog. True radar which provided directional and ranging information, such as the British Chain Home early warning system, was developed over the next two decades.
Jagdschloss, officially the FuG 404, was the designation of a German early warning and battle control radar developed just prior to the start of World War II. Although it was built in limited numbers, Jagdschloss is historically important as the first radar system to feature a plan position indicator display, or "PPI". In Germany this type of display was referred to as "Panorama". It is named for Jagdschloss, a hunting lodge.
During World War II, the German Luftwaffe relied on an increasingly diverse array of electronic communications, IFF and RDF equipment as avionics in its aircraft and also on the ground. Most of this equipment received the generic prefix FuG for Funkgerät, meaning "radio equipment". Most of the aircraft-mounted Radar equipment also used the FuG prefix. This article is a list and a description of the radio, IFF and RDF equipment.
Wilhelm Tolmé Runge was a German electrical engineer and physicist who had a major involvement in developing radar systems in Germany.
Radar in World War II greatly influenced many important aspects of the conflict. This revolutionary new technology of radio-based detection and tracking was used by both the Allies and Axis powers in World War II, which had evolved independently in a number of nations during the mid 1930s. At the outbreak of war in September 1939, both the United Kingdom and Germany had functioning radar systems. In the UK, it was called RDF, Range and Direction Finding, while in Germany the name Funkmeß (radio-measuring) was used, with apparatuses called Funkmessgerät . By the time of the Battle of Britain in mid-1940, the Royal Air Force (RAF) had fully integrated RDF as part of the national air defence.
Radar, Aircraft Interception, Mark IV, also produced in the USA as SCR-540, was the world's first operational air-to-air radar system. Early Mk. III units appeared in July 1940 on converted Bristol Blenheim light bombers, while the definitive Mk. IV reached widespread availability on the Bristol Beaufighter heavy fighter by early 1941. On the Beaufighter, the Mk. IV arguably played a role in ending the Blitz, the Luftwaffe's night bombing campaign of late 1940 and early 1941.
Radar, Aircraft Interception, Mark VIII, or AI Mk. VIII for short, was the first operational microwave-frequency air-to-air radar. It was used by Royal Air Force night fighters from late 1941 until the end of World War II. The basic concept, using a moving parabolic antenna to search for targets and track them accurately, remained in use by most airborne radars well into the 1980s.
The Kehl-Straßburg radio control link was a German MCLOS radio control system of World War II. The system was named for Strasbourg, the French/German city on the Rhine and Kehl, at the time a suburb of Strasbourg. It was used by the Fritz X guided bomb and the Henschel Hs 293 guided missile, and would also be trialled in test of the Henschel Hs 298 MCLOS-guidance air-to-air missile.
German Luftwaffe and Kriegsmarine Radar Equipment during World War II, relied on an increasingly diverse array of communications, IFF and RDF equipment for its function. Most of this equipment received the generic prefix FuG, meaning "radio equipment". During the war, Germany renumbered their radars. From using the year of introduction as their number, they moved to a different numbering scheme.
IFF Mark II was the first operational identification friend or foe system. It was developed by the Royal Air Force just before the start of World War II. After a short run of prototype Mark Is, used experimentally in 1939, the Mark II began widespread deployment at the end of the Battle of Britain in late 1940. It remained in use until 1943, when it began to be replaced by the standardised IFF Mark III, which was used by all Allied aircraft until long after the war ended.
IFF Mark III, also known as ARI.5025 in the UK or SCR.595 in the US, was the Allied Forces standard identification friend or foe (IFF) system from 1943 until well after the end of World War II. It was widely used by aircraft, ships, and submarines, as well as in various adaptations for secondary purposes like search and rescue. 500 units were also supplied to the Soviet Union during the war.
IFF Mark X was the NATO standard military identification friend or foe transponder system from the early 1950s until it was slowly replaced by the IFF Mark XII in the 1970s. It was also adopted by ICAO, with some modifications, as the civilian air traffic control (ATC) secondary radar (SSR) transponder. The X in the name does not mean "tenth", but "eXperimental". Later IFF models acted as if it was the tenth in the series and used subsequent numbers.
Perfectos was a radio device used by Royal Air Force's night fighters during the Second World War to detect German aircraft. It worked by triggering Luftwaffe's FuG 25a Erstling identification friend or foe (IFF) system and then using the response signal to determine the enemy aircraft's direction and range. This allowed RAF interceptors to track the Germans without the need for a radar system of their own, in contrast to the earlier Serrate radar detector that lacked range information and thus required a radar of their own for the final approach.
AMES Type 6, also known as the Light Warning Set or L/W, was a portable early warning radar developed by the Air Ministry Experimental Station (AMES) for use by the Royal Air Force (RAF) in the field. Units in British Army service were officially known as Radar, Anti-Aircraft, Number 4, or AA. No. 4 for short, although this name was rarely used in practice. The system was also built in Canada for use by the US Army, who referred to them as SCR-602-A.