Fusarium verticillioides

Last updated

Fusarium verticillioides
Fusarium verticillioides 01.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Hypocreales
Family: Nectriaceae
Genus: Fusarium
Species:
F. verticillioides
Binomial name
Fusarium verticillioides
(Sacc.) Nirenberg (1976)
Synonyms

Oospora verticillioidesSacc. (1881)
Alysidium verticillioides(Sacc.) Kuntze (1898)
Alysidium verticilliodes(Sacc.) Kuntze (1898)
Fusarium moniliformeJ. Sheld. (1904)
Fusarium celosiaeAbe (1928)
Oospora cephalosporioidesLuchetti & Favilli (1938)

Fusarium verticillioides is the most commonly reported fungal species infecting maize ( Zea mays ). Fusarium verticillioides is the accepted name of the species, which was also known as Fusarium moniliforme. The species has also been described as mating population A of the Fusarium fujikuroi species complex (formally known as Gibberella fujikuroi species complex). [1] F. verticllioides produces the mutagenic chemical compound fusarin C. [2] F. verticillioides produces a group of disease-causing mycotoxins—fumonisins—on infected kernels. [3]

Control

The growth of all strains of F. verticillioides is significantly inhibited by an iodine-containing fungistatic (AJ1629-34EC) at concentrations that do not harm the crop. This might be a less toxic anti-fungal agricultural treatment due to its relatively natural chemistry. [4]

Related Research Articles

<span class="mw-page-title-main">Fusarium ear blight</span> Fungal disease of cereals

Fusarium ear blight (FEB), is a fungal disease of cereals, including wheat, barley, oats, rye and triticale. FEB is caused by a range of Fusarium fungi, which infects the heads of the crop, reducing grain yield. The disease is often associated with contamination by mycotoxins produced by the fungi already when the crop is growing in the field. The disease can cause severe economic losses as mycotoxin-contaminated grain cannot be sold for food or feed.

<i>Botrytis cinerea</i> Species of fungus

Botrytis cinerea is a necrotrophic fungus that affects many plant species, although its most notable hosts may be wine grapes. In viticulture, it is commonly known as "botrytis bunch rot"; in horticulture, it is usually called "grey mould" or "gray mold".

<i>Fusarium oxysporum</i> Species of fungus

Fusarium oxysporum, an ascomycete fungus, comprises all the species, varieties and forms recognized by Wollenweber and Reinking within an infrageneric grouping called section Elegans. It is part of the family Nectriaceae.

<span class="mw-page-title-main">Fusarium wilt</span> Fungal plant disease

Fusarium wilt is a common vascular wilt fungal disease, exhibiting symptoms similar to Verticillium wilt. This disease has been investigated extensively since the early years of this century. The pathogen that causes Fusarium wilt is Fusarium oxysporum. The species is further divided into formae speciales based on host plant.

<i>Fusarium</i> Genus of fungi

Fusarium is a large genus of filamentous fungi, part of a group often referred to as hyphomycetes, widely distributed in soil and associated with plants. Most species are harmless saprobes, and are relatively abundant members of the soil microbial community. Some species produce mycotoxins in cereal crops that can affect human and animal health if they enter the food chain. The main toxins produced by these Fusarium species are fumonisins and trichothecenes. Despite most species apparently being harmless, some Fusarium species and subspecific groups are among the most important fungal pathogens of plants and animals.

<span class="mw-page-title-main">Fumonisin B2</span> Chemical compound

Fumonisin B2 is a fumonisin mycotoxin produced by the fungi Fusarium verticillioides and Aspergillus niger.

<span class="mw-page-title-main">Fumonisin</span> Group of chemical compounds

The fumonisins are a group of mycotoxins derived from Fusarium and their Liseola section. They have strong structural similarity to sphinganine, the backbone precursor of sphingolipids.

Mycotoxicology is the branch of mycology that focuses on analyzing and studying the toxins produced by fungi, known as mycotoxins. In the food industry it is important to adopt measures that keep mycotoxin levels as low as practicable, especially those that are heat-stable. These chemical compounds are the result of secondary metabolism initiated in response to specific developmental or environmental signals. This includes biological stress from the environment, such as lower nutrients or competition for those available. Under this secondary path the fungus produces a wide array of compounds in order to gain some level of advantage, such as incrementing the efficiency of metabolic processes to gain more energy from less food, or attacking other microorganisms and being able to use their remains as a food source.

<i>Gibberella zeae</i> Species of fungus

Gibberella zeae, also known by the name of its anamorph Fusarium graminearum, is a fungal plant pathogen which causes fusarium head blight (FHB), a devastating disease on wheat and barley. The pathogen is responsible for billions of dollars in economic losses worldwide each year. Infection causes shifts in the amino acid composition of wheat, resulting in shriveled kernels and contaminating the remaining grain with mycotoxins, mainly deoxynivalenol (DON), which inhibits protein biosynthesis; and zearalenone, an estrogenic mycotoxin. These toxins cause vomiting, liver damage, and reproductive defects in livestock, and are harmful to humans through contaminated food. Despite great efforts to find resistance genes against F. graminearum, no completely resistant variety is currently available. Research on the biology of F. graminearum is directed towards gaining insight into more details about the infection process and reveal weak spots in the life cycle of this pathogen to develop fungicides that can protect wheat from scab infection.

Crown rot of wheat is caused by the fungal pathogen Fusarium pseudograminearum. F. pseudograminearum is a member of the fungal phylum Ascomycota and is also known as Gibberella coronicola (teleomorph). It is a monoecious fungus, meaning it does not require another host other than wheat to complete its life cycle. Although F. pseudograminearum can produce both anamorphic and teleomorphic states, the teleomorph is usually not present for crown rot of wheat. This Fusarium species has, until recently, been considered to be the same as the species known as Fusarium graminearum due to many similar characteristics. One of the only differences between the two species is that F. pseudograminearum lacks its sexual stage on the wheat host.

Fusarium incarnatum is a fungal pathogen in the genus Fusarium, family Nectriaceae. It is usually associated with over 40 phylogenetic species in the natural environment to form the Fusarium incarnatum-equiseti species complex(FIESC). This complex is widespread across the globe in subtropical and temperate regions, resulting in many reported cases of crop diseases. It produces various mycotoxins including trichothecenes zearalenone, causing both plant and animal diseases.

Fusarium sporotrichioides is a fungal plant pathogen, one of various Fusarium species responsible for damaging crops, in particular causing a condition known as Fusarium head blight in wheat, consequently being of notable agricultural and economic importance. The species is ecologically widespread, being found across tropical and temperate regions, and is a significant producer of mycotoxins, particularly trichothecenes. Although mainly infecting crops, F. sporotrichioides-derived mycotoxins can have repercussions for human health in the case of the ingestion of infected cereals. One such example includes the outbreak of alimentary toxic aleukia (ATA) in Russia, of which F. sporotrichioides-infected crop was suspected to be the cause. Although current studies on F. sporotrichioides are somewhat limited in comparison to other species in the genus, Fusarium sporotrichioides has found several applications as a model system for experimentation in molecular biology.

<i>Fusarium subglutinans</i> Species of fungus

Fusarium subglutinans is a fungal plant pathogen.

<i>Gibberella fujikuroi</i> Species of fungus

Gibberella fujikuroi is a fungal plant pathogen. It causes bakanae disease in rice seedlings.

Microbial inoculants also known as soil inoculants or bioinoculants are agricultural amendments that use beneficial rhizosphericic or endophytic microbes to promote plant health. Many of the microbes involved form symbiotic relationships with the target crops where both parties benefit (mutualism). While microbial inoculants are applied to improve plant nutrition, they can also be used to promote plant growth by stimulating plant hormone production. Although bacterial and fungal inoculants are common, inoculation with archaea to promote plant growth is being increasingly studied.

<i>Fusarium circinatum</i> Species of fungus

Fusarium circinatum is a fungal plant pathogen that causes the serious disease pitch canker on pine trees and Douglas firs. The most common hosts of the pathogen include slash pine, loblolly pine, Monterey pine, Mexican weeping pine, and Douglas fir. Like other Fusarium species in the phylum Ascomycota, it is the asexual reproductive state of the fungus and has a teleomorph, Gibberella circinata.

Fusarium sterilihyphosum is a plant pathogen. It infects mango trees. Its aerial mycelium is almost white; conidiophores on aerial mycelium are erect, occasionally prostrate, and sympodially branched bearing mono- and polyphialides. Phialides on aerial conidiophores mono and polyphialidic. Sterile hyphae are present. Microconidia are obovoid, oval to allantoid, 0-septate conidia are abundant, 1-septate conidia less common. Sporodochia are seldom present. Macroconidia have slightly beaked apical cells, a footlike basal cell, 3–5 septate. Chlamydospores are absent.

<span class="mw-page-title-main">Fusarin</span>

Fusarins are a class of mycotoxins produced mainly by fungi of the genus Fusarium, which can infect agriculturally important crops such as wheat, barley, oats, rye, and corn. Chemically, they are polyketides that are also derived from amino acids.

<i>Stenocarpella maydis</i> Species of fungus

Stenocarpella maydis (Berk.) Sutton is a plant pathogenic fungus and causal organism of diplodia ear and stalk rot. Corn and canes are the only known hosts to date. No teleomorph of the fungus is known.

<span class="mw-page-title-main">Fumonisin B4</span> Chemical compound

Fumonisin B4 is a fumonisin mycotoxin produced mainly by the fungi Fusarium proliferatum, Fusarium verticillioides. Recently FB4 has been detected in fungi Aspergillus niger and in several Tolypocladium species.

References

  1. The name Fusarium moniliforme should no longer be used (Seifert, Keith A.; Aoki, Takayuki; Baayen, Robert P.; Brayford, David; Burgess, Lester W.; Chulze, Sofia; Gams, Walter; Geiser, David; De Gruyter, J.; Leslie, John F.; Logrieco, Antonio; Marasas, Walter F.O.; Nirenberg, Helgard I.; O'Donnell, Kerry; Rheeder, J.; Samuels, Gary J.; Summerell, Brett A.; Thrane, Ulf; Waalwijk, Cees (2003). "The Name Fusarium Moniliforme Should no Longer be Used". Mycological Research. 107 (6): 643. doi:10.1017/S095375620323820X.)
  2. Gelderblom, Wentzel C. A.; Thiel, Pieter G.; Marasas, Walter F. O.; Van Der Merwe, Kirsten J. (1984). "Natural occurrence of fusarin C, a mutagen produced by Fusarium moniliforme, in corn". Journal of Agricultural and Food Chemistry. 32 (5): 1064. doi:10.1021/jf00125a031.
  3. Ortiz, Carlos S.; Richards, Casey; Terry, Ashlee; Parra, Joselyn; Shim, Won-Bo (2015-09-01). "Genetic Variability and Geographical Distribution of Mycotoxigenic Fusarium verticillioides Strains Isolated from Maize Fields in Texas". The Plant Pathology Journal . Korean Society of Plant Pathology. 31 (3): 203–211. doi: 10.5423/ppj.oa.02.2015.0020 . ISSN   1598-2254. PMC   4564145 . PMID   26361468.
  4. Yates, Ida E.; Arnold, Judy W.; Bacon, Charles W.; Hinton, Dorothy M. (2004). "In vitro assessments of diverse plant pathogenic fungi treated with a novel growth control agent". Crop Protection . Elsevier BV. 23 (12): 1169–1176. doi:10.1016/j.cropro.2004.03.019. ISSN   0261-2194.