GCSH | |||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Identifiers | |||||||||||||||||||||||||||||||||||||||||||||||||||
Aliases | GCSH , GCE, NKH, glycine cleavage system protein H | ||||||||||||||||||||||||||||||||||||||||||||||||||
External IDs | OMIM: 238330 MGI: 1915383 HomoloGene: 90880 GeneCards: GCSH | ||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
| |||||||||||||||||||||||||||||||||||||||||||||||||||
Wikidata | |||||||||||||||||||||||||||||||||||||||||||||||||||
|
Glycine cleavage system H protein, mitochondrial (abbreviated as GCSH) is a protein that in humans is encoded by the GCSH gene. [4] [5] [6] Degradation of glycine is brought about by the glycine cleavage system (GCS), which is composed of 4 protein components: P protein (a pyridoxal phosphate-dependent glycine decarboxylase), H protein (a lipoic acid-containing protein; this protein), T protein (a tetrahydrofolate-requiring aminomethyltransferase enzyme), and L protein (a lipoamide dehydrogenase). [6] The H protein shuttles the methylamine group of glycine from the P protein to the T protein. The protein encoded by GCSH gene is the H protein, which transfers the methylamine group of glycine from the P protein to the T protein. [7] Defects in this gene are a cause of nonketotic hyperglycinemia (NKH). [8] Two transcript variants, one protein-coding and the other probably not protein-coding, have been found for this gene. Also, several transcribed and non-transcribed pseudogenes of this gene exist throughout the genome. [9]
The glycine cleavage system (GCS) is the major physiological pathway for glycine degradation in mammals and is confined to mitochondria of the liver, kidney, small intestine, pituitary, thyroid glands, and brain. [10] The P-protein is a pyridoxal phosphate-dependent glycine decarboxylase that transfers the methylamine moiety of glycine to one of the thiol groups in the lipoyl component of H-protein, a hydrogen-carrier protein and the second component of the complex. The T-protein catalyzes the release of ammonia and transfer of the one-carbon fragment from the intermediate lipoyl residue to tetrahydrofolate, while the L-protein, a lipoamide dehydrogenase, catalyzes the oxidation of the dihydrolipoyl residue of H-protein and reduction of NAD. [11]
Human GCSH gene has 5 exons spanning 13.5kb and resides on chromosome 16 at q23.2. [7]
The GCSH is a heat-stable small protein with a covalently attached lipoic acid prosthetic group which interacts with the three enzymes during the catalysis. The chemically determined amino acid sequence revealed that chicken H-protein is composed of 125 amino acids with a lipoic acid prosthetic group at lysine 59 (Lys59). [5] Because of its restricted tissue expression in humans, H-protein purified from chicken liver has been routinely used for the assay. [12] The H-protein comprises a mitochondrial targeting sequence and a mature mitochondrial matrix protein sequence. Its activation in vivo requires the attachment of a lipoic acid prosthetic group at Lys59 of the mature protein. [7] The matrix protein sequence is highly conserved and chicken H-protein has 85.6% amino acid sequence similarity to the human form. [13]
Nonketotic hyperglycinemia (NKH) is an inborn error of metabolism caused by deficiency in the glycine cleavage system (GCS). [14] Enzymatic analysis has identified three metabolic lesions in NKH, deficiencies of P-, T-, and H-proteins. [9] The first mutation identified in NKH was in the P-protein gene. [15] Subsequently, some patients were found to have mutations in the T-protein gene. [16] The structure, polymorphism, and expression of GCSH could facilitate the molecular analysis of patients with variant forms of NKH that are caused by H-protein deficiency. [7]
GCSH has been shown to interact with the other glycine cleavage system protein components: P protein, T protein and L protein. [7] [9]
Lipoic acid (LA), also known as α-lipoic acid, alpha-lipoic acid (ALA) and thioctic acid, is an organosulfur compound derived from caprylic acid. ALA is made in animals normally, and is essential for aerobic metabolism. It is also manufactured and is available as a dietary supplement in some countries where it is marketed as an antioxidant, and is available as a pharmaceutical drug in other countries. Lipoate is the conjugate base of lipoic acid, and the most prevalent form of LA under physiological conditions. Only the (R)-(+)-enantiomer (RLA) exists in nature and is essential for aerobic metabolism because RLA is an essential cofactor of many enzyme complexes.
Glycine encephalopathy is a rare autosomal recessive disorder of glycine metabolism. After phenylketonuria, glycine encephalopathy is the second most common disorder of amino acid metabolism. The disease is caused by defects in the glycine cleavage system, an enzyme responsible for glycine catabolism. There are several forms of the disease, with varying severity of symptoms and time of onset. The symptoms are exclusively neurological in nature, and clinically this disorder is characterized by abnormally high levels of the amino acid glycine in bodily fluids and tissues, especially the cerebrospinal fluid.
Malonyl-CoA decarboxylase, is found in bacteria and humans and has important roles in regulating fatty acid metabolism and food intake, and it is an attractive target for drug discovery. It is an enzyme associated with Malonyl-CoA decarboxylase deficiency. In humans, it is encoded by the MLYCD gene.
Serine dehydratase or L-serine ammonia lyase (SDH) is in the β-family of pyridoxal phosphate-dependent (PLP) enzymes. SDH is found widely in nature, but its structural and properties vary among species. SDH is found in yeast, bacteria, and the cytoplasm of mammalian hepatocytes. SDH catalyzes is the deamination of L-serine to yield pyruvate, with the release of ammonia.
Aminomethyltransferase is an enzyme that catabolizes the creation of methylenetetrahydrofolate. It is part of the glycine decarboxylase complex.
Glycine decarboxylase also known as glycine cleavage system P protein or glycine dehydrogenase is an enzyme that in humans is encoded by the GLDC gene.
Collagen alpha-5(IV) chain is a protein that in humans is encoded by the COL4A5 gene.
In enzymology, a lipoyl(octanoyl) transferase (EC 2.3.1.181) is an enzyme that catalyzes the chemical reaction
2-Oxoisovalerate dehydrogenase subunit beta, mitochondrial is an enzyme that in humans is encoded by the BCKDHB gene.
CAMP responsive element binding protein-like 1, also known as CREBL1, is a protein which in humans is encoded by the CREBL1 gene.
Mitochondrial-processing peptidase subunit beta is an enzyme that in humans is encoded by the PMPCB gene. This gene is a member of the peptidase M16 family and encodes a protein with a zinc-binding motif. This protein is located in the mitochondrial matrix and catalyzes the cleavage of the leader peptides of precursor proteins newly imported into the mitochondria, though it only functions as part of a heterodimeric complex.
UDP-glucuronic acid decarboxylase 1 is an enzyme that in humans is encoded by the UXS1 gene.
Glutamate decarboxylase 1 (GAD67), also known as GAD1, is a human gene.
The glycine cleavage system (GCS) is also known as the glycine decarboxylase complex or GDC. The system is a series of enzymes that are triggered in response to high concentrations of the amino acid glycine. The same set of enzymes is sometimes referred to as glycine synthase when it runs in the reverse direction to form glycine. The glycine cleavage system is composed of four proteins: the T-protein, P-protein, L-protein, and H-protein. They do not form a stable complex, so it is more appropriate to call it a "system" instead of a "complex". The H-protein is responsible for interacting with the three other proteins and acts as a shuttle for some of the intermediate products in glycine decarboxylation. In both animals and plants the glycine cleavage system is loosely attached to the inner membrane of the mitochondria. Mutations in this enzymatic system are linked with glycine encephalopathy.
Glutaredoxin 5, also known as GLRX5, is a protein which in humans is encoded by the GLRX5 gene located on chromosome 14. This gene encodes a mitochondrial protein, which is evolutionarily conserved. It is involved in the biogenesis of iron- sulfur clusters, which are required for normal iron homeostasis. Mutations in this gene are associated with autosomal recessive pyridoxine-refractory sideroblastic anemia.
In molecular biology, the Cofactor transferase family is a family of protein domains that includes biotin protein ligases, lipoate-protein ligases A, octanoyl-(acyl carrier protein):protein N-octanoyltransferases, and lipoyl-protein:protein N-lipoyltransferases. The metabolism of the cofactors Biotin and lipoic acid share this family. They also share the target modification domain, and the sulfur insertion enzyme.
In molecular biology, the group I pyridoxal-dependent decarboxylases, also known as glycine cleavage system P-proteins, are a family of enzymes consisting of glycine cleavage system P-proteins EC 1.4.4.2 from bacterial, mammalian and plant sources. The P protein is part of the glycine decarboxylase multienzyme complex (GDC) also annotated as glycine cleavage system or glycine synthase. The P protein binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor, carbon dioxide is released and the remaining methylamin moiety is then transferred to the lipoamide cofactor of the H protein. GDC consists of four proteins P, H, L and T.
Octanoyl-(GcvH):protein N-octanoyltransferase (EC 2.3.1.204, LIPL, octanoyl-[GcvH]:E2 amidotransferase, YWFL (gene)) is an enzyme with systematic name (glycine cleavage system H)-N6-octanoyl-L-lysine:(lipoyl-carrier protein)-N6-L-lysine octanoyltransferase. This enzyme catalyses the following chemical reaction
Lipoate–protein ligase (EC 2.7.7.63, LplA, lipoate protein ligase, lipoate–protein ligase A, LPL, LPL-B) is an enzyme with systematic name ATP:lipoate adenylyltransferase. This enzyme catalyses the following chemical reaction
Lipoic acid synthetase is a protein that in humans is encoded by the LIAS gene.