Genetic and Evolutionary Computation Conference

Last updated

The Genetic and Evolutionary Computation Conference (GECCO) is the premier conference in the area of genetic and evolutionary computation. GECCO has been held every year since 1999, when it was first established as a recombination of the International Conference on Genetic Algorithms (ICGA) and the Annual Genetic Programming Conference (GP).

GECCO presents the latest high-quality results in genetic and evolutionary computation. Topics of interest include: genetic algorithms, genetic programming, evolution strategies, evolutionary programming, estimation of distribution algorithms, memetic algorithms, hyper-heuristics, evolutionary robotics, evolvable hardware, artificial life, ant colony optimization algorithms, swarm intelligence, artificial immune systems, digital entertainment technologies, evolutionary art, evolutionary combinatorial optimization, metaheuristics, evolutionary multi-objective optimization, evolutionary machine learning, search-based software engineering, theory, real-world applications, and more.

Other important conferences in the field are IEEE Congress on Evolutionary Computation (CEC), Parallel Problem Solving from Nature (PPSN) and EvoStar (a group name for four co-located conferences, EuroGP, EvoCOP, EvoMUSART, and EvoApplications).

GECCO is the main annual conference of the Special Interest Group on Genetic and Evolutionary Computation (SIGEVO), which is a Special Interest Group (SIG) of the Association for Computing Machinery (ACM).


Related Research Articles

In artificial intelligence, genetic programming (GP) is a technique of evolving programs, starting from a population of unfit programs, fit for a particular task by applying operations analogous to natural genetic processes to the population of programs. It is essentially a heuristic search technique often described as 'hill climbing', i.e. searching for an optimal or at least suitable program among the space of all programs.

Genetic algorithm Competitive algorithm for searching a problem space

In computer science and operations research, a genetic algorithm (GA) is a metaheuristic inspired by the process of natural selection that belongs to the larger class of evolutionary algorithms (EA). Genetic algorithms are commonly used to generate high-quality solutions to optimization and search problems by relying on biologically inspired operators such as mutation, crossover and selection.

In computational intelligence (CI), an evolutionary algorithm (EA) is a subset of evolutionary computation, a generic population-based metaheuristic optimization algorithm. An EA uses mechanisms inspired by biological evolution, such as reproduction, mutation, recombination, and selection. Candidate solutions to the optimization problem play the role of individuals in a population, and the fitness function determines the quality of the solutions. Evolution of the population then takes place after the repeated application of the above operators.

Evolutionary computation Trial and error problem solvers with a metaheuristic or stochastic optimization character

In computer science, evolutionary computation is a family of algorithms for global optimization inspired by biological evolution, and the subfield of artificial intelligence and soft computing studying these algorithms. In technical terms, they are a family of population-based trial and error problem solvers with a metaheuristic or stochastic optimization character.

NeuroEvolution of Augmenting Topologies (NEAT) is a genetic algorithm (GA) for the generation of evolving artificial neural networks developed by Ken Stanley in 2002 while at The University of Texas at Austin. It alters both the weighting parameters and structures of networks, attempting to find a balance between the fitness of evolved solutions and their diversity. It is based on applying three key techniques: tracking genes with history markers to allow crossover among topologies, applying speciation to preserve innovations, and developing topologies incrementally from simple initial structures ("complexifying").

In evolutionary computation, a human-based genetic algorithm (HBGA) is a genetic algorithm that allows humans to contribute solution suggestions to the evolutionary process. For this purpose, a HBGA has human interfaces for initialization, mutation, and recombinant crossover. As well, it may have interfaces for selective evaluation. In short, a HBGA outsources the operations of a typical genetic algorithm to humans.

In natural evolution and artificial evolution the fitness of a schema is rescaled to give its effective fitness which takes into account crossover and mutation.

The IEEE Congress on Evolutionary Computation (CEC) is one of the largest and most important conferences within Evolutionary computation (EC), the other conferences of similar importance being Genetic and Evolutionary Computation Conference (GECCO), Parallel Problem Solving from Nature (PPSN) and EvoStar.

The learnable evolution model (LEM) is a non-Darwinian methodology for evolutionary computation that employs machine learning to guide the generation of new individuals. Unlike standard, Darwinian-type evolutionary computation methods that use random or semi-random operators for generating new individuals, LEM employs hypothesis generation and instantiation operators.

Evolutionary music is the audio counterpart to evolutionary art, whereby algorithmic music is created using an evolutionary algorithm. The process begins with a population of individuals which by some means or other produce audio, which is either initialized randomly or based on human-generated music. Then through the repeated application of computational steps analogous to biological selection, recombination and mutation the aim is for the produced audio to become more musical. Evolutionary sound synthesis is a related technique for generating sounds or synthesizer instruments. Evolutionary music is typically generated using an interactive evolutionary algorithm where the fitness function is the user or audience, as it is difficult to capture the aesthetic qualities of music computationally. However, research into automated measures of musical quality is also active. Evolutionary computation techniques have also been applied to harmonization and accompaniment tasks. The most commonly used evolutionary computation techniques are genetic algorithms and genetic programming.

Autoconstructive evolution is a process in which the entities undergoing evolutionary change are themselves responsible for the construction of their own offspring and thus for aspects of the evolutionary process itself. Because biological evolution is always autoconstructive, this term mainly occurs in evolutionary computation, to distinguish artificial life type systems from conventional genetic algorithms where the GA performs replication artificially. The term was coined by Lee Spector.

Riccardo Poli is a Professor in the Department of Computing and Electronic Systems of the University of Essex. His work has centered on genetic programming.

A hyper-heuristic is a heuristic search method that seeks to automate, often by the incorporation of machine learning techniques, the process of selecting, combining, generating or adapting several simpler heuristics to efficiently solve computational search problems. One of the motivations for studying hyper-heuristics is to build systems which can handle classes of problems rather than solving just one problem.

In artificial immune systems, clonal selection algorithms are a class of algorithms inspired by the clonal selection theory of acquired immunity that explains how B and T lymphocytes improve their response to antigens over time called affinity maturation. These algorithms focus on the Darwinian attributes of the theory where selection is inspired by the affinity of antigen-antibody interactions, reproduction is inspired by cell division, and variation is inspired by somatic hypermutation. Clonal selection algorithms are most commonly applied to optimization and pattern recognition domains, some of which resemble parallel hill climbing and the genetic algorithm without the recombination operator.

HyperNEAT

Hypercube-based NEAT, or HyperNEAT, is a generative encoding that evolves artificial neural networks (ANNs) with the principles of the widely used NeuroEvolution of Augmented Topologies (NEAT) algorithm. It is a novel technique for evolving large-scale neural networks using the geometric regularities of the task domain. It uses Compositional Pattern Producing Networks (CPPNs), which are used to generate the images for Picbreeder.org and shapes for EndlessForms.com. HyperNEAT has recently been extended to also evolve plastic ANNs and to evolve the location of every neuron in the network.

Meta-optimization

In numerical optimization, meta-optimization is the use of one optimization method to tune another optimization method. Meta-optimization is reported to have been used as early as in the late 1970s by Mercer and Sampson for finding optimal parameter settings of a genetic algorithm.

In applied mathematics, multimodal optimization deals with optimization tasks that involve finding all or most of the multiple solutions of a problem, as opposed to a single best solution. Evolutionary multimodal optimization is a branch of evolutionary computation, which is closely related to machine learning. Wong provides a short survey, wherein the chapter of Shir and the book of Preuss cover the topic in more detail.

Professor Emma Hart is an English computer scientist known for her work in Artificial Immune Systems (AIS), evolutionary computation and optimisation. She is a professor of computational intelligence at Edinburgh Napier University, editor-in-chief of the Journal of Evolutionary Computation, and D. Coordinator of the Future & Emerging Technologies (FET) Proactive Initiative, Fundamentals of Collective Adaptive Systems.

EvoStar

EvoStar, or Evo*, is an international scientific event devoted to evolutionary computation held in Europe. Its structure has evolved over time and it currently comprises four conferences: EuroGP the annual conference on Genetic Programming, EvoApplications, the International Conference on the Applications of Evolutionary Computation, EvoCOP, European Conference on Evolutionary Computation in Combinatorial Optimisation, and EvoMUSART, the International Conference on Computational Intelligence in Music, Sound, Art and Design. According to a 2016 study EvoApplications is a Q1 conference, while EuroGP and EvoCOP are both Q2.

Gabriela Ochoa is a Venezuelan British computer scientist and Professor at the University of Stirling. Her research considers evolutionary algorithms and heuristic search methods.