The Global Ocean Sampling Expedition (GOS) is an ocean exploration genome project whose goal is to assess genetic diversity in marine microbial communities and to understand their role in nature's fundamental processes. The two-year journey, which used Craig Venter's personal yacht, originated in Halifax, Canada, circumnavigated the globe and terminated in the U.S. in January 2006. The expedition sampled water from Halifax, Nova Scotia to the Eastern Tropical Pacific Ocean. During 2007, sampling continued along the west coast of North America.
The GOS datasets were submitted to both NCBI [1] and Community Cyberinfrastructure for Advanced Marine Microbial Ecology Research and Analysis (CAMERA), a new online resource for marine metagenomics funded by the Gordon and Betty Moore Foundation, developed by JCVI and hosted by UC San Diego's Division of the California Institute for Telecommunications and Information Technology (Calit2). CAMERA's toolset was developed by JCVI, and reflects the tools used in the initial publication of the GOS datasets.
The Sorcerer II effort has been funded by:
History | |
---|---|
Name | Sorcerer II |
Builder | Cookson |
Launched | 1998 |
Motto | – |
General characteristics | |
Length | 28.95 m (95.0 ft) |
Beam | 7.08 m (23.2 ft) |
Draught | 2.84 m (9 ft 4 in) |
Propulsion | One Cummins 300 HP |
Sorcerer II, a 95-foot sloop, completed a 2-year scientific expedition circumnavigating the globe in mid latitudes collecting samples of microbes in seawater for genetic sequencing and cataloguing. She was designed to be not just a world cruising yacht, but one that would be capable of handling the extremes in latitudes, from equatorial heat and humidity to latitudes between 60 and 70 degrees. SORCERER II's construction is light for performance, but very strong, with her kevlar and E glass laminates, epoxy bonding and carefully chosen core materials.
The vessel was designed by German Frers and carries 2,400 litres (630 US gal) of water.
The following list is of the official publications of the project and the J. Craig Venter Institute.
John Craig Venter is an American biotechnologist and businessman. He is known for leading one of the first draft sequences of the human genome and assembled the first team to transfect a cell with a synthetic chromosome. Venter founded Celera Genomics, the Institute for Genomic Research (TIGR) and the J. Craig Venter Institute (JCVI). He was the co-founder of Human Longevity Inc. and Synthetic Genomics. He was listed on Time magazine's 2007 and 2008 Time 100 list of the most influential people in the world. In 2010, the British magazine New Statesman listed Craig Venter at 14th in the list of "The World's 50 Most Influential Figures 2010". In 2012, Venter was honored with Dan David Prize for his contribution to genome research. He was elected to the American Philosophical Society in 2013. He is a member of the USA Science and Engineering Festival's advisory board.
Metagenomics is the study of genetic material recovered directly from environmental or clinical samples by a method called sequencing. The broad field may also be referred to as environmental genomics, ecogenomics, community genomics or microbiomics.
A brine pool, sometimes called an underwater lake, deepwater or brine lake, is a volume of brine collected in a seafloor depression. These pools are dense bodies of water that have a salinity that is typically three to eight times greater than the surrounding ocean. Brine pools are commonly found below polar sea ice and in the deep ocean. Those below sea ice form through a process called brine rejection. For deep-sea brine pools, salt is necessary to increase the salinity gradient. The salt can come from one of two processes: the dissolution of large salt deposits through salt tectonics or geothermally-heated brine issued from tectonic spreading centers.
MEGAN is a computer program that allows optimized analysis of large metagenomic datasets.
Picoeukaryotes are picoplanktonic eukaryotic organisms 3.0 μm or less in size. They are distributed throughout the world's marine and freshwater ecosystems and constitute a significant contribution to autotrophic communities. Though the SI prefix pico- might imply an organism smaller than atomic size, the term was likely used to avoid confusion with existing size classifications of plankton.
CAMERA, or the Community Cyberinfrastructure for Advanced Microbial Ecology Research and Analysis, is an online cloud computing service that provides hosted software tools and a high-performance computing infrastructure for the analysis of metagenomic data. The project was announced in January 2006, becoming Calit2's flagship project.
A wide variety of non-coding RNAs have been identified in various species of organisms known to science. However, RNAs have also been identified in "metagenomics" sequences derived from samples of DNA or RNA extracted from the environment, which contain unknown species. Initial work in this area detected homologs of known bacterial RNAs in such metagenome samples. Many of these RNA sequences were distinct from sequences within cultivated bacteria, and provide the potential for additional information on the RNA classes to which they belong.
SAM-V riboswitch is the fifth known riboswitch to bind S-adenosyl methionine (SAM). It was first discovered in the marine bacterium Candidatus Pelagibacter ubique and can also be found in marine metagenomes. SAM-V features a similar consensus sequence and secondary structure as the binding site of SAM-II riboswitch, but bioinformatics scans cluster the two aptamers independently. These similar binding pockets suggest that the two riboswitches have undergone convergent evolution.
The class Zetaproteobacteria is the sixth and most recently described class of the Pseudomonadota. Zetaproteobacteria can also refer to the group of organisms assigned to this class. The Zetaproteobacteria were originally represented by a single described species, Mariprofundus ferrooxydans, which is an iron-oxidizing neutrophilic chemolithoautotroph originally isolated from Kamaʻehuakanaloa Seamount in 1996 (post-eruption). Molecular cloning techniques focusing on the small subunit ribosomal RNA gene have also been used to identify a more diverse majority of the Zetaproteobacteria that have as yet been unculturable.
TimeLogic is the bioinformatics division of Active Motif, Inc. The company is headquartered in Carlsbad, California. TimeLogic develops FPGA-accelerated tools for biological sequence comparison in the field of high performance bioinformatics and biocomputing.
The Earth Microbiome Project (EMP) was an initiative founded by Janet Jansson, Jack Gilbert and Rob Knight in 2010 to collect natural samples and analyze microbial life around the globe.
Biological dark matter is an informal term for unclassified or poorly understood genetic material. This genetic material may refer to genetic material produced by unclassified microorganisms. By extension, biological dark matter may also refer to the un-isolated microorganism whose existence can only be inferred from the genetic material that they produce. Some of the genetic material may not fall under the three existing domains of life: Bacteria, Archaea and Eukaryota; thus, it has been suggested that a possible fourth domain of life may yet be discovered, although other explanations are also probable. Alternatively, the genetic material may refer to non-coding DNA and non-coding RNA produced by known organisms.
Viral metagenomics uses metagenomic technologies to detect viral genomic material from diverse environmental and clinical samples. Viruses are the most abundant biological entity and are extremely diverse; however, only a small fraction of viruses have been sequenced and only an even smaller fraction have been isolated and cultured. Sequencing viruses can be challenging because viruses lack a universally conserved marker gene so gene-based approaches are limited. Metagenomics can be used to study and analyze unculturable viruses and has been an important tool in understanding viral diversity and abundance and in the discovery of novel viruses. For example, metagenomics methods have been used to describe viruses associated with cancerous tumors and in terrestrial ecosystems.
Mark J. Pallen is a research leader at the Quadram Institute and Professor of Microbial Genomics at the University of East Anglia. In recent years, he has been at the forefront of efforts to apply next-generation sequencing to problems in microbiology and ancient DNA research.
A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.
Microbial dark matter (MDM) comprises the vast majority of microbial organisms that microbiologists are unable to culture in the laboratory, due to lack of knowledge or ability to supply the required growth conditions. Microbial dark matter is analogous to the dark matter of physics and cosmology due to its elusiveness in research and importance to our understanding of biological diversity. Microbial dark matter can be found ubiquitously and abundantly across multiple ecosystems, but remains difficult to study due to difficulties in detecting and culturing these species, posing challenges to research efforts. It is difficult to estimate its relative magnitude, but the accepted gross estimate is that as little as one percent of microbial species in a given ecological niche are culturable. In recent years, more effort has been directed towards deciphering microbial dark matter by means of recovering genome DNA sequences from environmental samples via culture independent methods such as single cell genomics and metagenomics. These studies have enabled insights into the evolutionary history and the metabolism of the sequenced genomes, providing valuable knowledge required for the cultivation of microbial dark matter lineages. However, microbial dark matter research remains comparatively undeveloped and is hypothesized to provide insight into processes radically different from known biology, new understandings of microbial communities, and increasing understanding of how life survives in extreme environments.
Virome refers to the assemblage of viruses that is often investigated and described by metagenomic sequencing of viral nucleic acids that are found associated with a particular ecosystem, organism or holobiont. The word is frequently used to describe environmental viral shotgun metagenomes. Viruses, including bacteriophages, are found in all environments, and studies of the virome have provided insights into nutrient cycling, development of immunity, and a major source of genes through lysogenic conversion. Also, the human virome has been characterized in nine organs of 31 Finnish individuals using qPCR and NGS methodologies.
Marine viruses are defined by their habitat as viruses that are found in marine environments, that is, in the saltwater of seas or oceans or the brackish water of coastal estuaries. Viruses are small infectious agents that can only replicate inside the living cells of a host organism, because they need the replication machinery of the host to do so. They can infect all types of life forms, from animals and plants to microorganisms, including bacteria and archaea.
Tatiana Rynearson is an American oceanographer who is a professor at the University of Rhode Island. Her research considers plankton diversity and abundance. Rynearson has been on several research cruises, including trips to the North Sea, Puget Sound, the Gulf of Mexico, and the North Atlantic.
Shubha Platt, known professionally as Shubha Sathyendranath, is a marine scientist known for her work on marine optics and remote sensing of ocean colour. She is the 2021 recipient of the A.G. Huntsman Award for Excellence in the Marine Sciences.