Glycoluril

Last updated
Glycoluril
Glycoluril.svg
Names
IUPAC name
Tetrahydroimidazo[4,5-d]imidazole-2,5(1H,3H)-dione
Other names
Acetylenediurea; Acetyleneurea; Acetylenediureine; Acetylene carbamide; Glyoxalbiuret; Glyoxaldiureine; Glyoxaldiurene
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.007.111 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C4H6N4O2/c9-3-5-1-2(7-3)8-4(10)6-1/h1-2H,(H2,5,7,9)(H2,6,8,10)
    Key: VPVSTMAPERLKKM-UHFFFAOYSA-N
  • InChI=1/C4H6N4O2/c9-3-5-1-2(7-3)8-4(10)6-1/h1-2H,(H2,5,7,9)(H2,6,8,10)
    Key: VPVSTMAPERLKKM-UHFFFAOYAG
  • C12C(NC(=O)N1)NC(=O)N2
Properties
C4H6N4O2
Molar mass 142.118 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Glycoluril is an organic chemical composed of two cyclic urea groups joined across the same two-carbon chain. It is a white powder that has been used in water treatment, in paints and coatings, and occasionally as a slow-release fertilizer.

Contents

Production

Glycoluril can be synthesized by reacting two equivalents of urea with glyoxal. Likewise, using other vicinal carbonyl (or carbonyl hydrate) reactants give derivatives having various functional groups in place of the hydrogen atoms on the carbon chain.

Properties

The four amide-like and therefore acidic hydrogen atoms of glycoluril are amenable to a variety of chemical reactions, such as substitution with halogen atoms or a reaction with formaldehyde.

Use

Glycouril itself and derivatives of it are used as monomers for producing the macrocyclic cucurbiturils polymers, which serve as hosts to bind to various neutral and cationic species. They are also used in several classes of non-cyclic structures that also bind a variety of structures. [1] [2]

Glycoluril is used as the starting material for tetrachloromoglycoluril [3] and tetrabromoglycoluril, which are used as biocides in water treatment, swimming pool disinfection, and as sludge control agents in papermaking.

The use of glycoluril as a sustained-release nitrogen fertilizer has been discussed, [4] but it has not been widely used because of its high cost.

Glycoluril can be converted with excess methanal into tetramethylol glycoluril, which releases methanal with delay and is therefore used as a biocide in water-based paints, in liquid detergents and in care and cleaning agents (in concentrations of 0.1%). [5] It also finds utility as a crosslinker for hydroxyl-containing polymers, as an industrial fungicide and as an accelerator in cements.

Tetraacetylglycoluril (TAGU) can be prepared from glycoluril by reaction with acetic anhydride. Tetraacetylglycoluril can be used, but it not very common as a bleach activator for sodium percarbonate in solid detergent formulations because of its slow biodegradability. [6] [7]

The reaction with nitrating acid (concentrated nitric acid and concentrated sulfuric acid) leads to the explosives dinitroglycoluril and tetranitroglycoluril. [8]

Related Research Articles

Urea, also called carbamide, is an organic compound with chemical formula CO(NH2)2. This amide has two amino groups joined by a carbonyl functional group. It is thus the simplest amide of carbamic acid.

<span class="mw-page-title-main">Aldehyde</span> Organic compound containing the functional group R−CH=O

In organic chemistry, an aldehyde is an organic compound containing a functional group with the structure R−CH=O. The functional group itself can be referred to as an aldehyde but can also be classified as a formyl group. Aldehydes are a common motif in many chemicals important in technology and biology.

Glutaraldehyde is an organic compound with the formula (CH2)3(CHO)2. The molecule consists of a five carbon chain doubly terminated with formyl (CHO) groups. It is usually used as a solution in water, and such solutions exists as a collection of hydrates, cyclic derivatives, and condensation products, several of which interconvert. Because the molecule has two carbonyl group that are reactive to primary amine groups, it can function as a crosslinking agent for any substance with primary amine groups and develop imine connected links. Crosslinking rigidifies and deactivates many biological functions, so in this way, glutaraldehyde solutions are used as biocides and as fixative. It is sold under the brandname Cidex and Glutaral. As a disinfectant, it is used to sterilize surgical instruments.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

A diol is a chemical compound containing two hydroxyl groups. An aliphatic diol is also called a glycol. This pairing of functional groups is pervasive, and many subcategories have been identified.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Michael addition reaction</span> Reaction in organic chemistry

In organic chemistry, the Michael reaction or Michael 1,4 addition is a reaction between a Michael donor and a Michael acceptor to produce a Michael adduct by creating a carbon-carbon bond at the acceptor's β-carbon. It belongs to the larger class of conjugate additions and is widely used for the mild formation of carbon-carbon bonds.

A tetrahedral intermediate is a reaction intermediate in which the bond arrangement around an initially double-bonded carbon atom has been transformed from trigonal to tetrahedral. Tetrahedral intermediates result from nucleophilic addition to a carbonyl group. The stability of tetrahedral intermediate depends on the ability of the groups attached to the new tetrahedral carbon atom to leave with the negative charge. Tetrahedral intermediates are very significant in organic syntheses and biological systems as a key intermediate in esterification, transesterification, ester hydrolysis, formation and hydrolysis of amides and peptides, hydride reductions, and other chemical reactions.

In organic chemistry, the Mannich reaction is a three-component organic reaction that involves the amino alkylation of an acidic proton next to a carbonyl functional group by formaldehyde and a primary or secondary amine or ammonia. The final product is a β-amino-carbonyl compound also known as a Mannich base. Reactions between aldimines and α-methylene carbonyls are also considered Mannich reactions because these imines form between amines and aldehydes. The reaction is named after Carl Mannich.

<span class="mw-page-title-main">Organotin chemistry</span> Branch of organic chemistry

Organotin chemistry is the scientific study of the synthesis and properties of organotin compounds or stannanes, which are organometallic compounds containing tin–carbon bonds. The first organotin compound was diethyltin diiodide, discovered by Edward Frankland in 1849. The area grew rapidly in the 1900s, especially after the discovery of the Grignard reagents, which are useful for producing Sn–C bonds. The area remains rich with many applications in industry and continuing activity in the research laboratory.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">Carbodiimide</span> Class of organic compounds with general structure RN=C=NR

In organic chemistry, a carbodiimide is a functional group with the formula RN=C=NR. On Earth they are exclusively synthetic, but in interstellar space the parent compound HN=C=NH has been detected by its maser emissions.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

<span class="mw-page-title-main">Benzylamine</span> Chemical compound

Benzylamine is an organic chemical compound with the condensed structural formula C6H5CH2NH2 (sometimes abbreviated as PhCH2NH2 or BnNH2). It consists of a benzyl group, C6H5CH2, attached to an amine functional group, NH2. This colorless water-soluble liquid is a common precursor in organic chemistry and used in the industrial production of many pharmaceuticals. The hydrochloride salt was used to treat motion sickness on the Mercury-Atlas 6 mission in which NASA astronaut John Glenn became the first American to orbit the Earth.

The Kulinkovich reaction describes the organic synthesis of substituted cyclopropanols through reaction of esters with dialkyl­dialkoxy­titanium reagents, which are generated in situ from Grignard reagents containing a hydrogen in beta-position and titanium(IV) alkoxides such as titanium isopropoxide. This reaction was first reported by Oleg Kulinkovich and coworkers in 1989.

Within the area of organocatalysis, (thio)urea organocatalysis describes the use of ureas and thioureas to accelerate and stereochemically alter organic transformations. The effects arise through hydrogen-bonding interactions between the substrate and the (thio)urea. Unlike classical catalysts, these organocatalysts interact by non-covalent interactions, especially hydrogen bonding. The scope of these small-molecule H-bond donors termed (thio)urea organocatalysis covers both non-stereoselective and stereoselective applications.

<span class="mw-page-title-main">Reductions with samarium(II) iodide</span>

Reductions with samarium(II) iodide involve the conversion of various classes of organic compounds into reduced products through the action of samarium(II) iodide, a mild one-electron reducing agent.

Boron monofluoride or fluoroborylene is a chemical compound with formula BF, one atom of boron and one of fluorine. It was discovered as an unstable gas and only in 2009 found to be a stable ligand combining with transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

An insertion reaction is a chemical reaction where one chemical entity interposes itself into an existing bond of typically a second chemical entity e.g.:

References

  1. Sijbesma, R. P.; Kentgens, A. P. M.; Lutz, E. T. G.; van der Maas, J. H.; Nolte, R. J. M. (1993). "Binding features of molecular clips derived from diphenylglycoluril" (PDF). J. Am. Chem. Soc. 115 (20): 8999–9005. doi:10.1021/ja00073a015. hdl: 2066/16304 . S2CID   96246662.
  2. Branda, Neil; Grotzfeld, Robert M.; Valdes, Carlos; Rebek, Julius Jr. (1995). "Control of Self-Assembly and Reversible Encapsulation of Xenon in a Self-Assembling Dimer by Acid-Base Chemistry". J. Am. Chem. Soc. 117 (1): 85–88. doi:10.1021/ja00106a010.
  3. Frank B. Slezak, Henry Bluestone, Thomas A. Magee, John H. Wotiz (1962), "Preparation of Substituted Glycolurils and Their N-Chlorinated Derivatives", The Journal of Organic Chemistry , vol. 27, no. 6, pp. 2181–2183, doi:10.1021/jo01053a069 {{citation}}: CS1 maint: multiple names: authors list (link)
  4. T. Shimidzu (1987), "Glycoluril as a Slow Release Nitrogen Fertilizer", Soil Science and Plant Nutrition , vol. 33, no. 2, pp. 291–298, doi: 10.1080/00380768.1987.10557574 , ISSN   0038-0768
  5. Verwendung von Formaldehyd oder Formaldehyd-Abspaltern in Pflege- und Reinigungsmitteln in Privathaushalten (PDF; 53 kB), Vortrag auf der BfR-Fachveranstaltung „Neubewertung von Formaldehyd – Beitrag des BfR zum Verb raucherschutz"
  6. Mattioda, Georges; Blanc, Alain. "Glyoxal". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a12_491.pub2.
  7. Uri Zoller (2008), "Kapitel 16: Application of Surfactants in Environmental Remediation", Handbook of detergents. Part E, Applications (in German), Boca Raton, Florida: CRC Press, ISBN   978-1-4200-1816-5
  8. J. K. Agrawal, R. D. Hodgson (2007), Organic chemistry of explosives, Chichester: John Wiley & Sons, p. 278, ISBN   978-0-470-02967-1