Glypican 1

Last updated
GPC1
4acr.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases GPC1 , glypican, Glypican 1
External IDs OMIM: 600395 MGI: 1194891 HomoloGene: 20477 GeneCards: GPC1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002081

NM_016696

RefSeq (protein)

NP_002072

NP_057905

Location (UCSC) Chr 2: 240.44 – 240.47 Mb Chr 1: 92.76 – 92.79 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Glypican-1 (GPC1) is a protein that in humans is encoded by the GPC1 gene. [5] [6] GPC1 is encoded by human GPC1 gene located at 2q37.3. [7] GPC1 contains 558 amino acids with three predicted heparan sulfate chains. [7]

Contents

Function

Cell surface heparan sulfate proteoglycans are composed of a membrane-associated protein core substituted with three heparan sulfate chains. [7] Members of the glypican-related integral membrane proteoglycan family (GRIPS) contain a core protein anchored to the cytoplasmic membrane via a glycosyl phosphatidylinositol linkage. These proteins may play a role in the control of cell division and growth regulation. [6]

Interactions

Glypican 1 has been shown to interact with SLIT2. [8]

Clinical significance

This protein is involved in the misfolding of normal prion proteins in the cell membrane to the infectious prion form. [9]

In 2015 it was reported that the presence of this protein in exosomes in patients' blood is able to detect early pancreatic cancer with absolute specificity and sensitivity. [10] However this conclusion is disputed. [11] and in more recent overviews of potential markers for pancreatic cancer, Glypican 1 is not mentioned. [12] [13]

Therapeutic antibodies against GPC1 have been developed. [14] [15] [16] [17] GPC1 has been evaluated as a potential target for cancer therapy, [7] including antibody-drug conjugates, [18] CAR-T cell therapy, [16] [15] [17] radiotherapy, [19] bispecific T cell engager [20] and immunotoxins [14] in preclinical studies.  HM2 is a mouse monoclonal antibody targeting the C-terminal end of GPC1 developed by the laboratory of Mitchell Ho at the NCI, NIH (Bethesda, US). [17] The Ho lab also produced a dromedary camel VHH nanobody called D4 specific for GPC1. [17] The D4 VHH nanobody-based CAR-T cells [17] and immunotoxins [14] were active against pancreatic cancer in mice. Miltuximab, a chimeric antibody against GPC1, was tested in radioimmunotherapy models of prostate cancer. [21]

See also

Related Research Articles

<span class="mw-page-title-main">Single-domain antibody</span> Antibody fragment

A single-domain antibody (sdAb), also known as a Nanobody, is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind selectively to a specific antigen. With a molecular weight of only 12–15 kDa, single-domain antibodies are much smaller than common antibodies which are composed of two heavy protein chains and two light chains, and even smaller than Fab fragments and single-chain variable fragments.

<span class="mw-page-title-main">Perlecan</span>

Perlecan (PLC) also known as basement membrane-specific heparan sulfate proteoglycan core protein (HSPG) or heparan sulfate proteoglycan 2 (HSPG2), is a protein that in humans is encoded by the HSPG2 gene. The HSPG2 gene codes for a 4,391 amino acid protein with a molecular weight of 468,829. It is one of the largest known proteins. The name perlecan comes from its appearance as a "string of pearls" in rotary shadowed images.

<span class="mw-page-title-main">Heparan sulfate</span> Macromolecule

Heparan sulfate (HS) is a linear polysaccharide found in all animal tissues. It occurs as a proteoglycan in which two or three HS chains are attached in close proximity to cell surface or extracellular matrix proteins. In this form, HS binds to a variety of protein ligands, including Wnt, and regulates a wide range of biological activities, including developmental processes, angiogenesis, blood coagulation, abolishing detachment activity by GrB, and tumour metastasis. HS has also been shown to serve as cellular receptor for a number of viruses, including the respiratory syncytial virus. One study suggests that cellular heparan sulfate has a role in SARS-CoV-2 Infection, particularly when the virus attaches with ACE2.

<span class="mw-page-title-main">Syndecan 1</span> Protein which in humans is encoded by the SDC1 gene

Syndecan 1 is a protein which in humans is encoded by the SDC1 gene. The protein is a transmembrane heparan sulfate proteoglycan and is a member of the syndecan proteoglycan family. The syndecan-1 protein functions as an integral membrane protein and participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins. Syndecan-1 is a sponge for growth factors and chemokines, with binding largely via heparan sulfate chains. The syndecans mediate cell binding, cell signaling, and cytoskeletal organization and syndecan receptors are required for internalization of the HIV-1 tat protein.

<span class="mw-page-title-main">Glypican</span>

Glypicans constitute one of the two major families of heparan sulfate proteoglycans, with the other major family being syndecans. Six glypicans have been identified in mammals, and are referred to as GPC1 through GPC6. In Drosophila two glypicans have been identified, and these are referred to as dally and dally-like. One glypican has been identified in C. elegans. Glypicans seem to play a vital role in developmental morphogenesis, and have been suggested as regulators for the Wnt and Hedgehog cell signaling pathways. They have additionally been suggested as regulators for fibroblast growth factor and bone morphogenic protein signaling.

<span class="mw-page-title-main">Heparin-binding EGF-like growth factor</span> Protein-coding gene in the species Homo sapiens

Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of proteins that in humans is encoded by the HBEGF gene.

<span class="mw-page-title-main">Sulfate transporter</span> Protein-coding gene in the species Homo sapiens

The sulfate transporter is a solute carrier family protein that in humans is encoded by the SLC26A2 gene. SLC26A2 is also called the diastrophic dysplasia sulfate transporter (DTDST), and was first described by Hästbacka et al. in 1994. A defect in sulfate activation described by Superti-Furga in achondrogenesis type 1B was subsequently also found to be caused by genetic variants in the sulfate transporter gene. This sulfate (SO42−) transporter also accepts chloride, hydroxyl ions (OH), and oxalate as substrates. SLC26A2 is expressed at high levels in developing and mature cartilage, as well as being expressed in lung, placenta, colon, kidney, pancreas and testis.

<span class="mw-page-title-main">Syndecan-2</span> Protein-coding gene in the species Homo sapiens

Syndecan-2 is a protein that in humans is encoded by the SDC2 gene.

<span class="mw-page-title-main">CASK</span> Protein-coding gene in humans

Peripheral plasma membrane protein CASK is a protein that in humans is encoded by the CASK gene. This gene is also known by several other names: CMG 2, calcium/calmodulin-dependent serine protein kinase 3 and membrane-associated guanylate kinase 2. CASK gene mutations are the cause of XL-ID with or without nystagmus and MICPCH, an X-linked neurological disorder.

<span class="mw-page-title-main">Heparanase</span> Mammalian protein found in Homo sapiens

Heparanase, also known as HPSE, is an enzyme that acts both at the cell-surface and within the extracellular matrix to degrade polymeric heparan sulfate molecules into shorter chain length oligosaccharides.

<span class="mw-page-title-main">Glypican 3</span> Protein-coding gene in the species Homo sapiens

Glypican-3 is a protein that, in humans, is encoded by the GPC3 gene. The GPC3 gene is located on human X chromosome (Xq26) where the most common gene encodes a 70-kDa core protein with 580 amino acids. Three variants have been detected that encode alternatively spliced forms termed Isoforms 1 (NP_001158089), Isoform 3 (NP_001158090) and Isoform 4 (NP_001158091).

<span class="mw-page-title-main">SLIT2</span> Protein-coding gene in the species Homo sapiens

Slit homolog 2 protein is a protein that in humans is encoded by the SLIT2 gene.

<span class="mw-page-title-main">Syndecan-3</span> Protein-coding gene in the species Homo sapiens

Syndecan-3 is a protein that in humans is encoded by the SDC3 gene.

<span class="mw-page-title-main">SLIT1</span> Mammalian protein found in Homo sapiens

Slit homolog 1 protein is a protein that in humans is encoded by the SLIT1 gene.

<span class="mw-page-title-main">Glypican 4</span> Protein-coding gene in the species Homo sapiens

Glypican-4 is a protein that in humans is encoded by the GPC4 gene.

<span class="mw-page-title-main">SULF1</span> Protein-coding gene in the species Homo sapiens

Sulfatase 1, also known as SULF1, is an enzyme which in humans is encoded by the SULF1 gene.

<span class="mw-page-title-main">Glypican 2</span> Protein-coding gene in the species Homo sapiens

Glypican 2 (GPC2), also known cerebroglycan, is a protein which in humans is encoded by the GPC2 gene. The GPC2 gene is at locus 7q22.1 and encodes for a 579 amino acid protein. The C-terminus of GPC2 has the GPI attachment site, at G554, and the N-terminus encodes a signal peptide, from M1 to S24. Multiple GPC2 mRNA transcripts have been identified. GPC2-201 is the isoform overexpressed in pediatric cancers. Tumor-associated exon 3 of GPC2 shows the lowest expression in normal tissues compared with other exons.

<span class="mw-page-title-main">Glypican 5</span> Protein-coding gene in the species Homo sapiens

Glypican-5 is a protein that in humans is encoded by the GPC5 gene.

<span class="mw-page-title-main">HS3ST2</span> Protein-coding gene in the species Homo sapiens

Heparan sulfate glucosamine 3-O-sulfotransferase 2 is an enzyme that in humans is encoded by the HS3ST2 gene.

<span class="mw-page-title-main">Glypican 6</span> Protein-coding gene in the species Homo sapiens

Glypican-6 is a protein that in humans is encoded by the GPC6 gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000063660 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000034220 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Vermeesch JR, Mertens G, David G, Marynen P (January 1995). "Assignment of the human glypican gene (GPC1) to 2q35-q37 by fluorescence in situ hybridization". Genomics. 25 (1): 327–329. doi:10.1016/0888-7543(95)80152-C. PMID   7774946.
  6. 1 2 "Entrez Gene: GPC1 glypican 1".
  7. 1 2 3 4 Pan J, Ho M (November 2021). "Role of glypican-1 in regulating multiple cellular signaling pathways". American Journal of Physiology. Cell Physiology. 321 (5): C846–C858. doi: 10.1152/ajpcell.00290.2021 . PMC   8616591 . PMID   34550795.
  8. Ronca F, Andersen JS, Paech V, Margolis RU (August 2001). "Characterization of Slit protein interactions with glypican-1". The Journal of Biological Chemistry. 276 (31): 29141–29147. doi: 10.1074/jbc.M100240200 . PMID   11375980.
  9. Taylor DR, Whitehouse IJ, Hooper NM (November 2009). "Glypican-1 mediates both prion protein lipid raft association and disease isoform formation". PLOS Pathogens. 5 (11): e1000666. doi: 10.1371/journal.ppat.1000666 . PMC   2773931 . PMID   19936054.
  10. Melo SA, Luecke LB, Kahlert C, Fernandez AF, Gammon ST, Kaye J, et al. (July 2015). "Glypican-1 identifies cancer exosomes and detects early pancreatic cancer". Nature. 523 (7559): 177–182. Bibcode:2015Natur.523..177M. doi:10.1038/nature14581. PMC   4825698 . PMID   26106858.
  11. Discussions at www.pubpeer.com; https://pubpeer.com/publications/70714D8ACB8F13164A2752B4335F38#fb119888
  12. Balasenthil S, Huang Y, Liu S, Marsh T, Chen J, Stass SA, et al. (August 2017). "A Plasma Biomarker Panel to Identify Surgically Resectable Early-Stage Pancreatic Cancer". Journal of the National Cancer Institute. 109 (8). doi:10.1093/jnci/djw341. PMC   6059209 . PMID   28376184.
  13. Chang JC, Kundranda M (March 2017). "Novel Diagnostic and Predictive Biomarkers in Pancreatic Adenocarcinoma". International Journal of Molecular Sciences. 18 (3): 667. doi: 10.3390/ijms18030667 . PMC   5372679 . PMID   28335509.
  14. 1 2 3 Pan J, Li N, Renn A, Zhu H, Chen L, Shen M, et al. (June 2022). "GPC1-Targeted Immunotoxins Inhibit Pancreatic Tumor Growth in Mice via Depletion of Short-lived GPC1 and Downregulation of Wnt Signaling". Molecular Cancer Therapeutics. 21 (6): 960–973. doi:10.1158/1535-7163.MCT-21-0778. PMC   9167738 . PMID   35312769.
  15. 1 2 Kato D, Yaguchi T, Iwata T, Katoh Y, Morii K, Tsubota K, et al. (March 2020). "GPC1 specific CAR-T cells eradicate established solid tumor without adverse effects and synergize with anti-PD-1 Ab". eLife. 9. doi: 10.7554/eLife.49392 . PMC   7108862 . PMID   32228854.
  16. 1 2 Li N, Li D, Ren H, Torres M, Ho M (2019-07-01). "Abstract 2309: Chimeric antigen receptor T-cell therapy targeting glypican-1 in pancreatic cancer". Immunology. 79 (13_Supplement). American Association for Cancer Research: 2309. doi:10.1158/1538-7445.am2019-2309. S2CID   216597566.
  17. 1 2 3 4 5 Li N, Quan A, Li D, Pan J, Ren H, Hoeltzel G, et al. (April 2023). "The IgG4 hinge with CD28 transmembrane domain improves VHH-based CAR T cells targeting a membrane-distal epitope of GPC1 in pancreatic cancer". Nature Communications. 14 (1): 1986. Bibcode:2023NatCo..14.1986L. doi:10.1038/s41467-023-37616-4. PMC   10082787 . PMID   37031249.
  18. Matsuzaki S, Serada S, Hiramatsu K, Nojima S, Matsuzaki S, Ueda Y, et al. (March 2018). "Anti-glypican-1 antibody-drug conjugate exhibits potent preclinical antitumor activity against glypican-1 positive uterine cervical cancer". International Journal of Cancer. 142 (5): 1056–1066. doi: 10.1002/ijc.31124 . PMID   29055044.
  19. Yeh MC, Tse BW, Fletcher NL, Houston ZH, Lund M, Volpert M, et al. (May 2020). "Targeted beta therapy of prostate cancer with 177Lu-labelled Miltuximab® antibody against glypican-1 (GPC-1)". EJNMMI Research. 10 (1): 46. doi: 10.1186/s13550-020-00637-x . PMC   7206480 . PMID   32382920.
  20. Lund ME, Howard CB, Thurecht KJ, Campbell DH, Mahler SM, Walsh BJ (December 2020). "A bispecific T cell engager targeting Glypican-1 redirects T cell cytolytic activity to kill prostate cancer cells". BMC Cancer. 20 (1): 1214. doi: 10.1186/s12885-020-07562-1 . PMC   7727117 . PMID   33302918.
  21. Sabanathan, Dhanusha; Campbell, Douglas; Velonas, Vicki; Wissmueller, Sandra; Mazure, Hubert; Trifunovic, Marko; Poursoltan, Pirooz; Ho-Shon, Kevin; Mackay, Tiffany; Lund, Maria; Lu, Yanling; Roach, Paul; Bailey, Dale; Walsh, Bradley; Gillatt, David (May 2021). "Safety and tolerability of Miltuximab® - a first in human study in patients with advanced solid cancers". Asia Oceania Journal of Nuclear Medicine and Biology. 9 (2): 86–100. doi:10.22038/aojnmb.2021.55600.1386. PMC   8255523 . PMID   34250138.

Further reading