Glypican 3

Last updated
GPC3
Identifiers
Aliases GPC3 , DGSX, GTR2-2, MXR7, OCI-5, SDYS, SGB, SGBS, SGBS1, Glypican 3
External IDs OMIM: 300037 MGI: 104903 HomoloGene: 20944 GeneCards: GPC3
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_004484
NM_001164617
NM_001164618
NM_001164619

NM_016697

RefSeq (protein)

NP_001158089
NP_001158090
NP_001158091
NP_004475
NP_004475.1

Contents

NP_057906

Location (UCSC) Chr X: 133.54 – 133.99 Mb Chr X: 51.36 – 51.7 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Glypican-3 is a protein that, in humans, is encoded by the GPC3 gene. [5] [6] [7] [8] The GPC3 gene is located on human X chromosome (Xq26) where the most common gene (Isoform 2, GenBank Accession No.: NP_004475) encodes a 70-kDa core protein with 580 amino acids. [9] Three variants have been detected that encode alternatively spliced forms termed Isoforms 1 (NP_001158089), Isoform 3 (NP_001158090) and Isoform 4 (NP_001158091). [9]

Structure and function

Schematic of the glypican-3 (GPC3) protein Schematic of the glypican-3 protein..tif
Schematic of the glypican-3 (GPC3) protein

The protein core of GPC3 consists of two subunits, where the N-terminal subunit has a size of ~40 kDa and the C-terminal subunit is ~30 kDa. [9] Six glypicans (GPC1-6) have been identified in mammals. Cell surface heparan sulfate proteoglycans are composed of a membrane-associated protein core substituted with a variable number of heparan sulfate chains. Members of the glypican-related integral membrane proteoglycan family (GRIPS) contain a core protein anchored to the cytoplasmic membrane via a glycosyl phosphatidylinositol linkage. These proteins may play a role in the control of cell division and growth regulation. [7] GPC3 has been found to regulate Wnt/β-catenin and Yap signaling pathways. [9] [10] [11] [12] [13] [14] [15] [16] GPC3 interacts with both Wnt and frizzled (FZD) to form a complex and triggers downstream signaling. [11] [17] The core protein of GPC3 may serve as a co-receptor or a receiver for Wnt. A cysteine-rich domain at the N-lobe of GPC3 has been identified as a hydrophobic groove that interacts with Wnt3a. [17] Blocking the Wnt binding domain on GPC3 using the HN3 single domain antibody can inhibit Wnt activation. [17] Wnt also recognizes a heparan sulfate structure on GPC3 , which contains IdoA2S and GlcNS6S, and that the 3-O-sulfation in GlcNS6S3S significantly enhances the binding of Wnt to heparan sulfate. [10] GPC3 also modulates Yap signaling. [12] It might interact with FAT1 on the cell surface. [15]

Disease linkage

Deletion mutations in this gene are associated with Simpson–Golabi–Behmel syndrome. [5]

Diagnostic utility

Glypican 3 immunostaining has utility for differentiating hepatocellular carcinoma (HCC) [18] and dysplastic changes in cirrhotic livers; HCC stains with glypican 3, while liver with dysplastic changes and/or cirrhotic changes does not. [19] Using the YP7 murine monoclonal antibody, GPC3 protein expression is found in HCC, not in normal liver and cholangiocarcinoma. [20] The YP7 murine antibody has been humanized and named as 'hYP7'. [21] GPC3 is also expressed to a lesser degree in melanoma, ovarian clear-cell carcinomas, yolk sac tumors, neuroblastoma, hepatoblastoma, Wilms' tumor cells, and other tumors. [9] However, the significance of GPC3 as a diagnostic tool for human tumors other than HCC is unclear.[ citation needed ]

Therapeutic potential

To validate GPC3 as a therapeutic target in liver cancer, the anti-GPC3 therapeutic antibodies GC33, [22] YP7, [20] HN3 [12] and HS20 [13] [23] have been made and widely tested. The laboratory of Mitchell Ho at the National Cancer Institute, NIH (Bethesda, Maryland, US) has generated YP7 and other murine monoclonal antibodies that recognize the C-lobe of GPC3 by hybridoma technology. [20] These antibodies have been humanized (e.g. hYP7) via antibody engineering for clinical applications. [21] The Ho lab has also identified the human single-domain antibody ('human nanobody') HN3 [12] targeting the N-lobe of GPC3 [17] and the human monoclonal antibody HS20 [13] [24] targeting the heparan sulfate chains on GPC3 by phage display technology. Both HN3 and HS20 antibodies inhibit Wnt signaling in liver cancer cells . The immunotoxins based on HN3, [14] [25] [26] the antibody-drug conjugates based on hYP7 [27] and the T-cell engaging bispecific antibodies derived from YP7 [28] [29] and GC33, [30] have been developed for treating liver cancer. The chimeric antigen receptor (CAR) T cell immunotherapies based on GC33, [31] hYP7 [32] [33] and HN3 [34] are being developed at various stages for treating liver cancer. In mice with xenograft or orthoptic liver tumors, CAR (hYP7) T cells can eliminate GPC3-positive cancer cells, by inducing perforin- and granzyme-mediated cell death and reducing Wnt signaling in tumor cells. [33] CAR (hYP7) T cells are being evaluated at a clinical trial at the NIH. [35]

See also

Related Research Articles

The Wnt signaling pathways are a group of signal transduction pathways which begin with proteins that pass signals into a cell through cell surface receptors. The name Wnt is a portmanteau created from the names Wingless and Int-1. Wnt signaling pathways use either nearby cell-cell communication (paracrine) or same-cell communication (autocrine). They are highly evolutionarily conserved in animals, which means they are similar across animal species from fruit flies to humans.

In biology, chimeric antigen receptors (CARs)—also known as chimeric immunoreceptors, chimeric T cell receptors or artificial T cell receptors—are receptor proteins that have been engineered to give T cells the new ability to target a specific antigen. The receptors are chimeric in that they combine both antigen-binding and T cell activating functions into a single receptor.

<span class="mw-page-title-main">Single-domain antibody</span> Antibody fragment

A single-domain antibody (sdAb), also known as a Nanobody, is an antibody fragment consisting of a single monomeric variable antibody domain. Like a whole antibody, it is able to bind selectively to a specific antigen. With a molecular weight of only 12–15 kDa, single-domain antibodies are much smaller than common antibodies which are composed of two heavy protein chains and two light chains, and even smaller than Fab fragments and single-chain variable fragments.

<span class="mw-page-title-main">Simpson–Golabi–Behmel syndrome</span> Congenital disorder

Simpson–Golabi–Behmel syndrome (SGBS) is a rare inherited congenital disorder that can cause craniofacial, skeletal, vascular, cardiac, and renal abnormalities. There is a high prevalence of cancer associated in those with SGBS which includes wilms tumors, neuroblastoma, tumors of the adrenal gland, liver, lungs and abdominal organs. The syndrome is inherited in an X-linked recessive manner. Females that possess one copy of the mutation are considered to be carriers of the syndrome but may still express varying degrees of the phenotype, suffering mild to severe malady. Males experience a higher likelihood of fetal death.

<span class="mw-page-title-main">Perlecan</span>

Perlecan (PLC) also known as basement membrane-specific heparan sulfate proteoglycan core protein (HSPG) or heparan sulfate proteoglycan 2 (HSPG2), is a protein that in humans is encoded by the HSPG2 gene. The HSPG2 gene codes for a 4,391 amino acid protein with a molecular weight of 468,829. It is one of the largest known proteins. The name perlecan comes from its appearance as a "string of pearls" in rotary shadowed images.

<span class="mw-page-title-main">Heparan sulfate</span> Macromolecule

Heparan sulfate (HS) is a linear polysaccharide found in all animal tissues. It occurs as a proteoglycan in which two or three HS chains are attached in close proximity to cell surface or extracellular matrix proteins. In this form, HS binds to a variety of protein ligands, including Wnt, and regulates a wide range of biological activities, including developmental processes, angiogenesis, blood coagulation, abolishing detachment activity by GrB, and tumour metastasis. HS has also been shown to serve as cellular receptor for a number of viruses, including the respiratory syncytial virus. One study suggests that cellular heparan sulfate has a role in SARS-CoV-2 Infection, particularly when the virus attaches with ACE2.

<span class="mw-page-title-main">Syndecan 1</span> Protein which in humans is encoded by the SDC1 gene

Syndecan 1 is a protein which in humans is encoded by the SDC1 gene. The protein is a transmembrane heparan sulfate proteoglycan and is a member of the syndecan proteoglycan family. The syndecan-1 protein functions as an integral membrane protein and participates in cell proliferation, cell migration and cell-matrix interactions via its receptor for extracellular matrix proteins. Syndecan-1 is a sponge for growth factors and chemokines, with binding largely via heparan sulfate chains. The syndecans mediate cell binding, cell signaling, and cytoskeletal organization and syndecan receptors are required for internalization of the HIV-1 tat protein.

<span class="mw-page-title-main">Glypican</span>

Glypicans constitute one of the two major families of heparan sulfate proteoglycans, with the other major family being syndecans. Six glypicans have been identified in mammals, and are referred to as GPC1 through GPC6. In Drosophila two glypicans have been identified, and these are referred to as dally and dally-like. One glypican has been identified in C. elegans. Glypicans seem to play a vital role in developmental morphogenesis, and have been suggested as regulators for the Wnt and Hedgehog cell signaling pathways. They have additionally been suggested as regulators for fibroblast growth factor and bone morphogenic protein signaling.

<span class="mw-page-title-main">Liver cancer</span> Medical condition

Liver cancer, also known as hepatic cancer, primary hepatic cancer, or primary hepatic malignancy, is cancer that starts in the liver. Liver cancer can be primary in which the cancer starts in the liver, or it can be liver metastasis, or secondary, in which the cancer spreads from elsewhere in the body to the liver. Liver metastasis is the more common of the two liver cancers. Instances of liver cancer are increasing globally.

<span class="mw-page-title-main">LGR5</span> Protein-coding gene in humans

Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) also known as G-protein coupled receptor 49 (GPR49) or G-protein coupled receptor 67 (GPR67) is a protein that in humans is encoded by the LGR5 gene. It is a member of GPCR class A receptor proteins. R-spondin proteins are the biological ligands of LGR5. LGR5 is expressed across a diverse range of tissue such as in the muscle, placenta, spinal cord and brain and particularly as a biomarker of adult stem cells in certain tissues.

<span class="mw-page-title-main">Secreted frizzled-related protein 1</span> Protein-coding gene in the species Homo sapiens

Secreted frizzled-related protein 1, also known as SFRP1, is a protein which in humans is encoded by the SFRP1 gene.

<span class="mw-page-title-main">Glypican 1</span> Protein-coding gene in the species Homo sapiens

Glypican-1 (GPC1) is a protein that in humans is encoded by the GPC1 gene. GPC1 is encoded by human GPC1 gene located at 2q37.3. GPC1 contains 558 amino acids with three predicted heparan sulfate chains.

<span class="mw-page-title-main">FGF19</span> Protein-coding gene in the species Homo sapiens

Fibroblast growth factor 19 is a protein that in humans is encoded by the FGF19 gene. It functions as a hormone, regulating bile acid synthesis, with effects on glucose and lipid metabolism. Reduced synthesis, and blood levels, may be a factor in chronic bile acid diarrhea and in certain metabolic disorders.

<span class="mw-page-title-main">Glypican 4</span> Protein-coding gene in the species Homo sapiens

Glypican-4 is a protein that in humans is encoded by the GPC4 gene.

<span class="mw-page-title-main">SULF1</span> Protein-coding gene in the species Homo sapiens

Sulfatase 1, also known as SULF1, is an enzyme which in humans is encoded by the SULF1 gene.

<span class="mw-page-title-main">Glypican 2</span> Protein-coding gene in the species Homo sapiens

Glypican 2 (GPC2), also known cerebroglycan, is a protein which in humans is encoded by the GPC2 gene. The GPC2 gene is at locus 7q22.1 and encodes for a 579 amino acid protein. The C-terminus of GPC2 has the GPI attachment site, at G554, and the N-terminus encodes a signal peptide, from M1 to S24. Multiple GPC2 mRNA transcripts have been identified. GPC2-201 is the isoform overexpressed in pediatric cancers. Tumor-associated exon 3 of GPC2 shows the lowest expression in normal tissues compared with other exons.

A431 cells are a model human cell line used in biomedical research.

<span class="mw-page-title-main">Hippo signaling pathway</span> Signaling pathway that controls organ size

The Hippo signaling pathway, also known as the Salvador-Warts-Hippo (SWH) pathway, is a signaling pathway that controls organ size in animals through the regulation of cell proliferation and apoptosis. The pathway takes its name from one of its key signaling components—the protein kinase Hippo (Hpo). Mutations in this gene lead to tissue overgrowth, or a "hippopotamus"-like phenotype.

George K. Michalopoulos is a Greek-American pathologist and academic. He served as Maud L. Menten Professor of Experimental Pathology and Chair of the Department of Pathology at the University of Pittsburgh and UPMC from 1991 to 2023.

hPG80 refers to the extracellular and oncogenic version of progastrin. This name first appeared in a scientific publication in January 2020. Until that date, scientific publications only mention 'progastrin', without necessarily explicitly specifying whether it is intracellular or extracellular in the tumor pathological setting.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000147257 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000055653 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 Pilia G, Hughes-Benzie RM, MacKenzie A, Baybayan P, Chen EY, Huber R, et al. (March 1996). "Mutations in GPC3, a glypican gene, cause the Simpson-Golabi-Behmel overgrowth syndrome". Nature Genetics. 12 (3): 241–247. doi:10.1038/ng0396-241. PMID   8589713. S2CID   38846721.
  6. Veugelers M, Vermeesch J, Watanabe K, Yamaguchi Y, Marynen P, David G (October 1998). "GPC4, the gene for human K-glypican, flanks GPC3 on xq26: deletion of the GPC3-GPC4 gene cluster in one family with Simpson-Golabi-Behmel syndrome". Genomics. 53 (1): 1–11. doi:10.1006/geno.1998.5465. PMID   9787072.
  7. 1 2 "Entrez Gene: GPC3 glypican 3".
  8. Jakubovic BD, Jothy S (April 2007). "Glypican-3: from the mutations of Simpson-Golabi-Behmel genetic syndrome to a tumor marker for hepatocellular carcinoma". Experimental and Molecular Pathology. 82 (2): 184–189. doi:10.1016/j.yexmp.2006.10.010. PMID   17258707.
  9. 1 2 3 4 5 6 Ho M, Kim H (February 2011). "Glypican-3: a new target for cancer immunotherapy". European Journal of Cancer. 47 (3): 333–338. doi:10.1016/j.ejca.2010.10.024. PMC   3031711 . PMID   21112773.
  10. 1 2 Gao W, Xu Y, Liu J, Ho M (May 2016). "Epitope mapping by a Wnt-blocking antibody: evidence of the Wnt binding domain in heparan sulfate". Scientific Reports. 6: 26245. Bibcode:2016NatSR...626245G. doi:10.1038/srep26245. PMC   4869111 . PMID   27185050.
  11. 1 2 Li N, Gao W, Zhang YF, Ho M (November 2018). "Glypicans as Cancer Therapeutic Targets". Trends in Cancer. 4 (11): 741–754. doi:10.1016/j.trecan.2018.09.004. PMC   6209326 . PMID   30352677.
  12. 1 2 3 4 Feng M, Gao W, Wang R, Chen W, Man YG, Figg WD, et al. (March 2013). "Therapeutically targeting glypican-3 via a conformation-specific single-domain antibody in hepatocellular carcinoma". Proceedings of the National Academy of Sciences of the United States of America. 110 (12): E1083–E1091. Bibcode:2013PNAS..110E1083F. doi: 10.1073/pnas.1217868110 . PMC   3607002 . PMID   23471984.
  13. 1 2 3 Gao W, Kim H, Feng M, Phung Y, Xavier CP, Rubin JS, Ho M (August 2014). "Inactivation of Wnt signaling by a human antibody that recognizes the heparan sulfate chains of glypican-3 for liver cancer therapy". Hepatology. 60 (2): 576–587. doi:10.1002/hep.26996. PMC   4083010 . PMID   24492943.
  14. 1 2 Gao W, Tang Z, Zhang YF, Feng M, Qian M, Dimitrov DS, Ho M (March 2015). "Immunotoxin targeting glypican-3 regresses liver cancer via dual inhibition of Wnt signalling and protein synthesis". Nature Communications. 6: 6536. Bibcode:2015NatCo...6.6536G. doi:10.1038/ncomms7536. PMC   4357278 . PMID   25758784.
  15. 1 2 Meng P, Zhang YF, Zhang W, Chen X, Xu T, Hu S, et al. (January 2021). "Identification of the atypical cadherin FAT1 as a novel glypican-3 interacting protein in liver cancer cells". Scientific Reports. 11 (1): 40. doi:10.1038/s41598-020-79524-3. PMC   7794441 . PMID   33420124.
  16. Kolluri A, Ho M (2019). "The Role of Glypican-3 in Regulating Wnt, YAP, and Hedgehog in Liver Cancer". Frontiers in Oncology. 9: 708. doi: 10.3389/fonc.2019.00708 . PMC   6688162 . PMID   31428581.
  17. 1 2 3 4 Li N, Wei L, Liu X, Bai H, Ye Y, Li D, et al. (October 2019). "A Frizzled-Like Cysteine-Rich Domain in Glypican-3 Mediates Wnt Binding and Regulates Hepatocellular Carcinoma Tumor Growth in Mice". Hepatology. 70 (4): 1231–1245. doi:10.1002/hep.30646. PMC   6783318 . PMID   30963603.
  18. Filmus J, Capurro M (2004). "Glypican-3 and alphafetoprotein as diagnostic tests for hepatocellular carcinoma". Molecular Diagnosis. 8 (4): 207–212. doi:10.1007/bf03260065. PMID   15887976. S2CID   6312940.
  19. Anatelli F, Chuang ST, Yang XJ, Wang HL (August 2008). "Value of glypican 3 immunostaining in the diagnosis of hepatocellular carcinoma on needle biopsy". American Journal of Clinical Pathology. 130 (2): 219–223. doi:10.1309/WMB5PX57Y4P8QCTY. PMID   18628090. S2CID   45888415.
  20. 1 2 3 Phung Y, Gao W, Man YG, Nagata S, Ho M (September 2012). "High-affinity monoclonal antibodies to cell surface tumor antigen glypican-3 generated through a combination of peptide immunization and flow cytometry screening". mAbs. 4 (5): 592–599. doi:10.4161/mabs.20933. PMC   3499300 . PMID   22820551.
  21. 1 2 Zhang YF, Ho M (September 2016). "Humanization of high-affinity antibodies targeting glypican-3 in hepatocellular carcinoma". Scientific Reports. 6: 33878. Bibcode:2016NatSR...633878Z. doi:10.1038/srep33878. PMC   5036187 . PMID   27667400.
  22. Ishiguro T, Sugimoto M, Kinoshita Y, Miyazaki Y, Nakano K, Tsunoda H, et al. (December 2008). "Anti-glypican 3 antibody as a potential antitumor agent for human liver cancer". Cancer Research. 68 (23): 9832–9838. doi:10.1158/0008-5472.CAN-08-1973. PMID   19047163.
  23. Kim H, Ho M (November 2018). "Isolation of Antibodies to Heparan Sulfate on Glypicans by Phage Display". Current Protocols in Protein Science. 94 (1): e66. doi:10.1002/cpps.66. PMC   6205898 . PMID   30091851.
  24. Kim H, Ho M (November 2018). "Isolation of Antibodies to Heparan Sulfate on Glypicans by Phage Display". Current Protocols in Protein Science. 94 (1): e66. doi:10.1002/cpps.66. PMC   6205898 . PMID   30091851.
  25. Wang C, Gao W, Feng M, Pastan I, Ho M (May 2017). "Construction of an immunotoxin, HN3-mPE24, targeting glypican-3 for liver cancer therapy". Oncotarget. 8 (20): 32450–32460. doi:10.18632/oncotarget.10592. PMC   5464801 . PMID   27419635.
  26. Fleming BD, Urban DJ, Hall MD, Longerich T, Greten TF, Pastan I, Ho M (May 2020). "Engineered Anti-GPC3 Immunotoxin, HN3-ABD-T20, Produces Regression in Mouse Liver Cancer Xenografts Through Prolonged Serum Retention". Hepatology. 71 (5): 1696–1711. doi:10.1002/hep.30949. PMC   7069773 . PMID   31520528.
  27. Fu Y, Urban DJ, Nani RR, Zhang YF, Li N, Fu H, et al. (August 2019). "Glypican-3-Specific Antibody Drug Conjugates Targeting Hepatocellular Carcinoma". Hepatology. 70 (2): 563–576. doi:10.1002/hep.30326. PMC   6482108 . PMID   30353932.
  28. "Federal Register /Vol. 82, No. 96 / Friday, May 19, 2017" (PDF).
  29. Chen X, Chen Y, Liang R, Xiang L, Li J, Zhu Y, et al. (November 2021). "Combination Therapy of Hepatocellular Carcinoma by GPC3-Targeted Bispecific Antibody and Irinotecan is Potent in Suppressing Tumor Growth in Mice". Molecular Cancer Therapeutics. 21 (1): 149–158. doi:10.1158/1535-7163.MCT-20-1025. PMC   8742776 . PMID   34725191.
  30. Ishiguro T, Sano Y, Komatsu SI, Kamata-Sakurai M, Kaneko A, Kinoshita Y, et al. (October 2017). "An anti-glypican 3/CD3 bispecific T cell-redirecting antibody for treatment of solid tumors". Science Translational Medicine. 9 (410): eaal4291. doi: 10.1126/scitranslmed.aal4291 . PMID   28978751. S2CID   206693656.
  31. Gao H, Li K, Tu H, Pan X, Jiang H, Shi B, et al. (December 2014). "Development of T cells redirected to glypican-3 for the treatment of hepatocellular carcinoma". Clinical Cancer Research. 20 (24): 6418–6428. doi: 10.1158/1078-0432.CCR-14-1170 . PMID   25320357. S2CID   24474000.
  32. Li D, Li N, Zhang Y, Fu H, Torres MB, Wang Q, Greten TF, Ho M (2018-07-01). "Abstract 2549: Development of CAR T-cell therapy targeting glypican-3 in liver cancer". Immunology. 78 (13_Supplement). American Association for Cancer Research: 2549. doi:10.1158/1538-7445.AM2018-2549. S2CID   81043794.
  33. 1 2 Li D, Li N, Zhang YF, Fu H, Feng M, Schneider D, et al. (June 2020). "Persistent Polyfunctional Chimeric Antigen Receptor T Cells That Target Glypican 3 Eliminate Orthotopic Hepatocellular Carcinomas in Mice". Gastroenterology. 158 (8): 2250–2265.e20. doi:10.1053/j.gastro.2020.02.011. PMC   7282931 . PMID   32060001.
  34. Kolluri A, Li D, Li N, Duan Z, Roberts LR, Ho M (2023-02-01). "Human VH-based chimeric antigen receptor T cells targeting glypican 3 eliminate tumors in preclinical models of HCC". Hepatology Communications. 7 (2): e0022. doi: 10.1097/HC9.0000000000000022 . ISSN   2471-254X. PMC   9851680 . PMID   36691969.
  35. NCT05003895

Further reading