Gnomoniopsis castaneae

Last updated

Gnomoniopsis castaneae
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Diaporthales
Family: Gnomoniaceae
Genus: Gnomoniopsis
Species:
G. castaneae
Binomial name
Gnomoniopsis castaneae
Tamietti (2012)
Synonyms [1]
  • Gnomoniopsis castaneaTamietti (2012)
  • Gnomoniopsis smithogilvyiL.A. Shuttlew., E.C.Y. Liew & D.I. Guest (2012)

Gnomoniopsis castaneae (synonym Gnomoniopsis smithogilvyi) is a fungus of the order Diaporthales [2] that is the most important cause of brown chestnut rot, [3] an emerging disease [4] that damages the fruit of chestnuts. It also causes cankers and necrosis on leaves and on chestnut galls caused by the gall wasp, Dryocosmus kuriphilus . [5] It has been observed to cause cankers in chestnut wood. [6] Additionally, it can cause cankers on other chestnut species, red oak, hazelnut trees, less severe damage to some nut trees, and lives as an endophyte on other nut trees. [7] [8] The disease has been reported in Europe, Oceania, and has recently been found in North America; [9] for this reason, the fungus is considered a potential threat to the reintroduction of the American chestnut. [10] [11]

In brown chestnut rot, Gnomoniopsis castaneae infects the kernel of the nut with browning and necrosis of endosperm and embryo. Brown chestnut rot is expressed cryptically with apparently healthy nuts found after harvest to exhibit internal rot. The fungus is believed to initially establish endophyte colonization of chestnut tissues, only becoming pathogenic with ripening of the nuts. Early on, parasitized nuts are difficult to distinguish from good nuts, rot only being detected when processed or eaten. The route of infection is uncertain but is believed to be either infection of chestnut flowers by ascospores or conidia or by inoculum entrance through shell defects. The fungus persists as a saprophyte in duff, such as burs, fallen leaves and other residua, which act as the reservoir for formation of perithecia with eventual release of spores. The nature of the transfer of inoculum and dispersal in time and space and the effect of climate is unknown. [12]

The fungus also kills the chestnut gall wasp Dryocosmus kuriphilus and has been proposed as a potential natural biocontrol agent against insect pests, based on studies of its effect on Plodia interpunctella and Trogoderma granarium . [13] Exposure of the fungus to the commercial biofungicide Serenade® ASO (Bacillus amyloliquefaciens QST 713; ASO) induced the fungus to produce the mycotoxins 3-nitropropionic acid and diplodiatoxin. Exposure of the fungus to the chemical fungicide Horizon® (tebuconazole; HOR) induced the fungus to produce diplodiatoxin. These mycotoxins might present a health hazard to human consumers of chestnuts treated with these fungicides. [14]

In a chestnut orchard context, strategies for managing Gnomoniopsis castaneae infections include aggressive pruning of infected branches, maintaining tree health via proper hydration and nutrient provision so as to improve resistance, and fungicide application when necessary. Since this fungus can spread through spores, proper sanitation and disposal of infected plant material are also crucial to limit its spread.

Related Research Articles

<span class="mw-page-title-main">Chestnut</span> Genus of plants

The chestnuts are the deciduous trees and shrubs in the genus Castanea, in the beech family Fagaceae. The name also refers to the edible nuts they produce. They are native to temperate regions of the Northern Hemisphere.

<span class="mw-page-title-main">American chestnut</span> Species of chestnut tree

The American chestnut is a large, fast-growing deciduous tree of the beech family native to eastern North America. As is true of all species in the genus Castanea, the American chestnut produces burred fruit with edible nuts. The American chestnut was once one of the most important forest trees throughout its range.

<span class="mw-page-title-main">Chestnut blight</span> Fungus disease of chestnut trees

The pathogenic fungus Cryphonectria parasitica is a member of the Ascomycota. This necrotrophic fungus is native to East Asia and South East Asia and was introduced into Europe and North America in the early 1900s. The fungus spread rapidly and caused significant tree loss in both regions.

Brown rot may refer to the following diseases:

<i>Botrytis cinerea</i> Species of fungus

Botrytis cinerea is a necrotrophic fungus that affects many plant species, although its most notable hosts may be wine grapes. In viticulture, it is commonly known as "botrytis bunch rot"; in horticulture, it is usually called "grey mould" or "gray mold".

<i>Castanea sativa</i> Species of tree

Castanea sativa, the sweet chestnut, Spanish chestnut or just chestnut, is a species of tree in the family Fagaceae, native to Southern Europe and Asia Minor, and widely cultivated throughout the temperate world. A substantial, long-lived deciduous tree, it produces an edible seed, the chestnut, which has been used in cooking since ancient times.

<i>Castanea crenata</i> Species of flowering plant

Castanea crenata, the Japanese chestnut or Korean chestnut, is a species of chestnut native to Japan and Korea. Castanea crenata exhibits resistance to Phytophthora cinnamomi, the fungal pathogen that causes ink disease in several Castanea species. The mechanism of resistance of Castanea crenata to Phytophthora cinnamomi may derive from its expression of the Cast_Gnk2-like gene.

<i>Castanea pumila</i> Species of tree

Castanea pumila, commonly known as the Allegheny chinquapin, American chinquapin or dwarf chestnut, is a species of chestnut native to the southeastern United States. The native range is from Massachusetts and New York to Maryland and extreme southern New Jersey and southeast Pennsylvania south to central Florida, west to eastern Texas, and north to southern Missouri and Kentucky. The plant's habitat is dry sandy and rocky uplands and ridges mixed with oak and hickory to 1000 m elevation. It grows best on well-drained soils in full sun or partial shade.

<i>Monilinia fructicola</i> Species of fungus

Monilinia fructicola is a species of fungus in the order Helotiales. A plant pathogen, it is the causal agent of brown rot of stone fruits.

<i>Botryosphaeria obtusa</i> Species of fungus

Botryosphaeria obtusa is a plant pathogen that causes frogeye leaf spot, black rot and cankers on many plant species. On the leaf it is referred to as frogeye leaf spot; this phase typically affects tree and shrubs. In fruit such as the apple, cranberry and quince, it is referred to as black rot, and in twigs and trunks it causes cankers.

<span class="mw-page-title-main">Phytophthora cambivora</span> Species of single-celled organism

Phytophthora × cambivora is a plant pathogen that causes ink disease in European chestnut trees. Ink disease, also caused by Phytophthora cinnamomi, is thought to have been present in Europe since the 18th century, and causes chestnut trees to wilt and die; major epidemics occurred during the 19th and 20th centuries. P. cinnamomi and P. × cambivora are now present throughout Europe since the 1990s. Ink disease has resurged, often causing high mortality of trees, particularly in Portugal, Italy, and France. It has also been isolated from a number of different species since the 1990s, including:

<i>Monilinia laxa</i> Species of fungus

Monilinia laxa is a plant pathogen that is the causal agent of brown rot of stone fruits.

<i>Lasiodiplodia theobromae</i> Species of fungus

Lasiodiplodia theobromae is a plant pathogen with a very wide host range. It causes rotting and dieback in most species it infects. It is a common post harvest fungus disease of citrus known as stem-end rot. It is a cause of bot canker of grapevine. It also infects Biancaea sappan, a species of flowering tree also known as Sappanwood.

Magnaporthe salvinii is a fungus known to attack a variety of grass and rice species, including Oryza sativa and Zizania aquatica. Symptoms of fungal infection in plants include small, black, lesions on the leaves that develop into more widespread leaf rot, which then spreads to the stem and causes breakage. As part of its life cycle, the fungus produces sclerotia that persist in dead plant tissue and the soil. Management of the fungus may be effected by tilling the soil, reducing its nitrogen content, or by open field burning, all of which reduce the number of sclerotia, or by the application of a fungicide.

<span class="mw-page-title-main">Diaporthales</span> Order of fungi

Diaporthales is an order of sac fungi.

<i>Dryocosmus kuriphilus</i> Species of wasp

Dryocosmus kuriphilus is a species of gall wasp known by the common names chestnut gall wasp, Oriental chestnut gall wasp, and Asian chestnut gall wasp. It is native to China and it is known in many other parts of the world, particularly the Northern Hemisphere, as an introduced species and an invasive horticultural pest. It attacks many species of chestnut, including most cultivated varieties. It is considered the world's worst pest of chestnuts.

The Precoce Migoule is a chestnut hybrid, a natural cross between a European chestnut and a Japanese chestnut. It was discovered by J. Dufrenoy at the orchard of Migoule in Brive-la-Gaillarde. The tree is vigorous and erect growing with growth of a metre or more in a season if the conditions are right. It is a large sized chestnut tree with height reaching 20 m or more and 7.5-10 m wide. Trees start to bear after 3 to 5 years. Full nut production in 12 - 20 years depending on the location.

Marsol is a natural chestnut hybrid, a cross between a European chestnut and Japanese.

Comballe is a French traditional chestnut variety. In France, it is the variety with the largest production. This beautiful rustic nut of Ardèche origin has a bright, streaky chestnut colour. Its fine, sweet and fragrant flesh justifies the excellent taste reputation.

<i>Castanea seguinii</i> Species of plant

Castanea seguinii, called Seguin chestnut, Seguin's chestnut, or Chinese chinquapin, and in Chinese: 茅栗, mao li, is a species of chestnut native to south‑central and southeast China.

References

  1. Gnomoniopsis castaneae in MycoBank.
  2. Jiang, Ning; Voglmayr, Hermann; Bian, Dan-Ran; Piao, Chun-Gen; Wang, Sheng-Kun; Li, Yong (24 September 2021). "Morphology and Phylogeny of Gnomoniopsis (Gnomoniaceae, Diaporthales) from Fagaceae Leaves in China". Journal of Fungi. 7 (10): 792. doi: 10.3390/jof7100792 . PMC   8540803 . PMID   34682214.
  3. Visentin, Ivan, S. Gentile, Danila Valentino, Paolo Gonthier, and F. Cardinale. "Gnomoniopsis castanea sp. nov.(Gnomoniaceae, Diaporthales) as the causal agent of nut rot in sweet chestnut." Journal of Plant Pathology (2012): 411-419.
  4. Lione, Guglielmo; Giordano, Luana; Sillo, Fabiano; Brescia, Francesca; Gonthier, Paolo (December 2021). "Temporal and spatial propagule deposition patterns of the emerging fungal pathogen of chestnut Gnomoniopsis castaneae in orchards of north‐western Italy". Plant Pathology. 70 (9): 2016–2033. doi:10.1111/ppa.13451. hdl: 2318/1817358 .
  5. Lema, Filipe; Baptista, Paula; Oliveira, Cristina; Ramalhosa, Elsa (21 March 2023). "Brown Rot Caused by Gnomoniopsis smithogilvyi (syn. Gnomoniopsis castaneae) at the Level of the Chestnut Tree (Castanea sativa Mill.)". Applied Sciences. 13 (6): 3969. doi: 10.3390/app13063969 . hdl: 10400.5/30284 .
  6. Pasche, Sabrina; Calmin, Gautier; Auderset, Guy; Crovadore, Julien; Pelleteret, Pegah; Mauch-Mani, Brigitte; Barja, François; Paul, Bernard; Jermini, Mauro; Lefort, François (February 1, 2016). "Gnomoniopsis smithogilvyi causes chestnut canker symptoms in Castanea sativa shoots in Switzerland". Fungal Genetics and Biology. 87: 9–21. doi:10.1016/j.fgb.2016.01.002. PMID   26768710 via ScienceDirect.
  7. Dobry, Emily; Rutter, Michael; Campbell, Michael (25 May 2023). "The fungal pathogen Gnomoniopsis castaneae induces damaging cankers in multiple domestic Fagaceae species". Phytopathology: PHYTO12220451SC. doi:10.1094/PHYTO-12-22-0451-SC. PMID   37227197. S2CID   258889105.
  8. Lione, G.; Danti, R.; Fernandez-Conradi, P.; Ferreira-Cardoso, J. V.; Lefort, F.; Marques, G.; Meyer, J. B.; Prospero, S.; Radócz, L.; Robin, C.; Turchetti, T.; Vettraino, A. M.; Gonthier, P. (March 2019). "The emerging pathogen of chestnut Gnomoniopsis castaneae: the challenge posed by a versatile fungus". European Journal of Plant Pathology. 153 (3): 671–685. doi:10.1007/s10658-018-1597-2. S2CID   254471695.
  9. Dobry, Emily; Campbell, Michael (February 2023). "Gnomoniopsis castaneae : An emerging plant pathogen and global threat to chestnut systems". Plant Pathology. 72 (2): 218–231. doi: 10.1111/ppa.13670 .
  10. Aglietti, Chiara; Cappelli, Alessio; Andreani, Annalisa (26 September 2022). "From Chestnut Tree (Castanea sativa) to Flour and Foods: A Systematic Review of the Main Criticalities and Control Strategies towards the Relaunch of Chestnut Production Chain". Sustainability. 14 (19): 12181. doi: 10.3390/su141912181 .
  11. Robin, Cécile; Marchand, Marylise (2022). "Diseases of chestnut trees". Forest Microbiology: 311–323. doi:10.1016/B978-0-323-85042-1.00036-7. ISBN   9780323850421.
  12. Possamai, Guilherme; Dallemole-Giaretta, Rosangela; Gomes-Laranjo, José; Sampaio, Ana; Rodrigues, Paula (24 March 2023). "Chestnut Brown Rot and Gnomoniopsis smithogilvyi: Characterization of the Causal Agent in Portugal". Journal of Fungi. 9 (4): 401. doi: 10.3390/jof9040401 . hdl: 10198/28307 . PMC   10143102 . PMID   37108855.
  13. Mantzoukas, Spiridon; Lagogiannis, Ioannis; Ntoukas, Aristeidis; Tziros, George T.; Poulas, Konstantinos; Eliopoulos, Panagiotis A.; Avtzis, Dimitrios Ν. (29 April 2021). "Could Gnomoniopsis castaneae Be Used as a Biological Control Agent against Insect Pests?". Applied Sciences. 11 (9): 4066. doi: 10.3390/app11094066 .
  14. Álvarez, Micaela; Agostini, Isadora; Silva, Sofia; Dallemole-Giaretta, Rosangela; Sulyok, Michael; Sampaio, Ana; Rodrigues, Paula (30 May 2023). "Mycotoxins and Other Secondary Metabolites Are Produced by Gnomoniopsis smithogilvyi When Confronted with Biological and Chemical Control Agents". Agriculture. 13 (6): 1166. doi: 10.3390/agriculture13061166 . hdl: 10198/28560 .