Haloferax larsenii

Last updated

Haloferax larsenii
Scientific classification
Domain:
Phylum:
Class:
Order:
Family:
Genus:
Species:
H. larsenii
Binomial name
Haloferax larsenii
Xue-Wei Xu et al. 2007 [1]

Haloferax larsenii is a gram-negative, aerobic, neutrophilic, extremely halophilic archaeon. It was named in honor of Professor Helge Larsen, who pioneered research on halophiles. [1]

Contents

Discovery

Haloferax larsenii was isolated from a solar saltern in the Zhoushan archipelago, Zhejiang Province, China. The researchers who discovered this species isolated three strains of H. larsenii. When this species was discovered, the genus Haloferax comprised Haloferax volcanii , H. mediterranei, H. denitrificans, H. gibbonsii, H. alexandrinus, H. lucentense, and H. sulfurifontis. [1] Since this time, H. prahovense, H. elongans, and H. mucosum have been discovered, which totals to 11 species in the genus. [2]

Diversity

Like most species in Haloferax , H. larsenii was isolated from an extremely salty environment consisting of a mixture of mud and brine. [1]

Phylogenetic position

The species has been placed in a phylogeny: [3]

Haloferax elongans

Haloferax larsenii

Characteristics

Cells of H. larsenii are extremely pleomorphic and irregularly shaped with a diameter of 0.8-1.5 μm. Motility of cells has been noted, but flagella have not been observed by electron microscopy. The major polar lipids are the C20C20 derivatives of phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, diglycosyl glycerol diether, and sulfated diglycosyl diether. The DNA G+C content of DNA of the ZJ206T strain is 62.2±0.8 mol% as determined by thermal denaturation.

When grown on complex agar medium, colonies appeared orange-red, smooth, circular, elevated, and 1–2 mm in diameter. Colonies can grow with NaCl concentrations of 1.0-4.8 M, with optimum growth between 2.2 and 3.4 M. However, saturated NaCl inhibits growth in liquid medium. The optimum pH for growth is 6.5-7.0 and the optimum temperature for growth is 42-45 °C. Anaerobic growth occurs on nitrate with the production of gas; nitrate is reduced to nitrite.

Glucose, glycerol, mannose, starch, maltose, sucrose, glutamate, alanine, ornithine, fumarate, malate, pyruvate, succinate, and lactate substrates support growth. Growth is not sustained on arabinose, lactose, mannitol, rhamnose, sorbitol, galactose, ribose, xylose, arginine, lysine, aspartate, glycine, acetate, propionate, and citrate.

Sensitivity to novobiocin, bacitracin, anisomycin, aphidicolin, and rifampicin have been observed. However, no sensitivity has been shown to ampicillin, penicillin, chloramphenicol, erythromycin, neomycin, nalidixic acid, nystatin, tetracycline, streptomycin, or kanamycin.

Furthermore, H. larsenii was shown to form indole, hydrolyze gelatin, starch, and Tweens 40 and 80; produce acid from glycerol, maltose, glucose, fructose, and sucrose; and form H2S from thiosulfate. [1]

Related Research Articles

In taxonomy, Vulcanisaeta is a genus of the Thermoproteaceae.

<i>Haloarcula</i> Genus of archaea

Haloarcula is a genus of extreme halophilic Archaea in the class of Halobactaria.

Halopiger is a genus of archaeans in the family Natrialbaceae that have high tolerance to salinity.

In taxonomy, Halovivax is a genus of the Natrialbaceae. Some species of Halovivax are halophiles and have been found in Iran's Aran-Bidgol hypersaline lake.

Sporobolomyces koalae is a species of fungus in the order Sporidiobolales. It is an anamorphic yeast. Strains of the yeast were isolated from nasal swabs from three of five captive Queensland koalas kept at the Kobe Oji Zoo in Kobe, Japan. Swabs from three zoo keepers were examined as well, but tested negative for the presence of the yeast. It is not suspected to be pathogenic, as the koalas from which it was isolated were healthy.

<i>Haloquadratum walsbyi</i> Species of halotolerant archaea

Haloquadratum walsbyi is a species of Archaea in the genus Haloquadratum, known for its square shape and halophilic nature.

Halobacterium noricense is a halophilic, rod-shaped microorganism that thrives in environments with salt levels near saturation. Despite the implication of the name, Halobacterium is actually a genus of archaea, not bacteria. H. noricense can be isolated from environments with high salinity such as the Dead Sea and the Great Salt Lake in Utah. Members of the Halobacterium genus are excellent model organisms for DNA replication and transcription due to the stability of their proteins and polymerases when exposed to high temperatures. To be classified in the genus Halobacterium, a microorganism must exhibit a membrane composition consisting of ether-linked phosphoglycerides and glycolipids.

Halostagnicola larsenii is a non-motile, aerobic, gram-negative, rod shaped archaeon. It is a halophilic, neutrophilic, chemo-organotroph and was isolated from samples taken from a saline lake in China. The etymology of the name comes from hals, halos Greek for salt, stagnum Latin for a piece of standing water, -cola Latin for inhabitant or dweller, and Larsenii named after the Norwegian microbiologist, Helge Larsen, who was a pioneer in research regarding halophiles.

Rhizobium bangladeshense is a gram-negative bacterium which was isolated from root nodules of lentils in Bangladesh.

Rhizobium binae is a gram-negative bacterium which was isolated from root nodules of lentils in Bangladesh.

Rhizobium lentis is a gram-negative bacterium which was isolated from root nodules of lentils in Bangladesh.

Haladaptatus paucihalophilus is a halophilic archaeal species, originally isolated from a spring in Oklahoma. It uses a new pathway to synthesize glycine, and contains unique physiological features for osmoadaptation.

Nocardiopsis sinuspersici is a species of bacteria that is an aerobic, Gram positive, alkalohalophilic, actinomycete. While species from the genus Nocardiopsis have been found in a variety of environments, primarily soils, strain N. sinuspersici sp. nov was isolated from sandy rhizospheric soils from Sarbandar and Khoramshahr in Iran.

Haloarcula marismortui is a halophilic archaeon isolated from the Dead Sea

Halorhabdus utahensis is a halophilic archaeon isolated from the Great Salt Lake in Utah.

Salisediminibacterium halotolerans is a gram-positive, alkalitolerant, and halophilic bacterium from the family Bacillaceae and genus of Salisediminibacterium, which was one of three bacterial strains, and the only novel species, isolated from sediments from the Xiarinaoer soda lake in Mongolia in 2012.

Kazachstania yasuniensis is a recently isolated yeast. This organism is part of the genus Kazachstania, which can be found in a large variety of habitats such as fermented foods, animals, wastewater, et cetera.

<i>Arthrobacter bussei</i> Species of bacterium

Arthrobacter bussei is a pink-coloured, aerobic, coccus-shaped, Gram-stain-positive, oxidase-positive and catalase-positive bacterium isolated from cheese made of cow's milk. A. bussei is non-motile and does not form spores. Rod–coccus life cycle is not observed. Cells are 1.1–1.5 μm in diameter. On trypticase soy agar it forms pink-coloured, raised and round colonies, which are 1.0 mm in diameter after 5 days at 30 °C The genome of the strain A. bussei KR32T has been fully sequenced.

Hanseniaspora opuntiae is a species of yeast in the family Saccharomycetaceae. It has been isolated from locations worldwide, on grape berries and on prickly pear cacti.

Halorubrum kocurii is a halophilic archaean belonging to the genus Halorubrum. This genus contains a total of thirty-seven different species, all of which thrive in high-salinity environments. Archaea belonging to this genus are typically found in hypersaline environments due to their halophilic nature, specifically in solar salterns. Halorubrum kocurii is a rod-shaped, Gram-negative archaeon. Different from its closest relatives, Halorubrum kocurii is non-motile and contains no flagella or cilia. This archaeon thrives at high pH levels, high salt concentrations, and moderate temperatures. It has a number of close relatives, including Halorubrum aidingense, Halorubrum lacusprofundi, and more.

References

  1. 1 2 3 4 5 Xu, Xue-Wei; et al. (2007). "Haloferax larsenii sp. nov., an extremely halophilic archaeon from a solar saltern". International Journal of Systematic and Evolutionary Microbiology. 57 (4): 717–720. doi: 10.1099/ijs.0.64573-0 . PMID   17392193.
  2. Allen, Michelle A.; et al. (2008). "Haloferax elongans sp. nov. and Haloferax mucosum sp. nov., isolated from microbial mats from Hamelin Pool, Shark Bay, Australia". International Journal of Systematic and Evolutionary Microbiology. 58 (4): 798–802. doi: 10.1099/ijs.0.65360-0 . PMID   18398172.
  3. Tekin, Ebru; Ateş, Mustafa; Kahraman, Özge (2012). "Poly-3-hydroxybutyrate-producing extreme halophilic archaeon: Haloferax sp. MA10 isolated from Çamaltı Saltern, İzmir". Turk J Biol. 36: 303–312.