Heilbronn triangle problem

Last updated

Unsolved problem in mathematics:

What is the asymptotic growth rate of the area of the smallest triangle determined by three out of points in a square, when the points are chosen to maximize this area?

Contents

Six points in the unit square, with the smallest triangles (red) having area 1/8, the optimal area for this number of points. Other larger triangles are colored blue. These points are an affine transformation of a regular hexagon, but for larger numbers of points the optimal solution does not form a convex polygon. Heilbronn square n=6.svg
Six points in the unit square, with the smallest triangles (red) having area 1/8, the optimal area for this number of points. Other larger triangles are colored blue. These points are an affine transformation of a regular hexagon, but for larger numbers of points the optimal solution does not form a convex polygon.

In discrete geometry and discrepancy theory, the Heilbronn triangle problem is a problem of placing points in the plane, avoiding triangles of small area. It is named after Hans Heilbronn, who conjectured that, no matter how points are placed in a given area, the smallest triangle area will be at most inversely proportional to the square of the number of points. His conjecture was proven false, but the asymptotic growth rate of the minimum triangle area remains unknown.

Definition

The Heilbronn triangle problem concerns the placement of points within a shape in the plane, such as the unit square or the unit disk, for a given number . Each triple of points form the three vertices of a triangle, and among these triangles, the problem concerns the smallest triangle, as measured by area. Different placements of points will have different smallest triangles, and the problem asks: how should points be placed to maximize the area of the smallest triangle? [1]

More formally, the shape may be assumed to be a compact set in the plane, meaning that it stays within a bounded distance from the origin and that points are allowed to be placed on its boundary. In most work on this problem, is additionally a convex set of nonzero area. When three of the placed points lie on a line, they are considered as forming a degenerate triangle whose area is defined to be zero, so placements that maximize the smallest triangle will not have collinear triples of points. The assumption that the shape is compact implies that there exists an optimal placement of points, rather than only a sequence of placements approaching optimality. The number may be defined as the area of the smallest triangle in this optimal placement. [1] [lower-alpha 1] An example is shown in the figure, with six points in a unit square. These six points form different triangles, four of which are shaded in the figure. Six of these 20 triangles, with two of the shaded shapes, have area 1/8; the remaining 14 triangles have larger areas. This is the optimal placement of six points in a unit square: all other placements form at least one triangle with area 1/8 or smaller. Therefore, . [2]

Although researchers have studied the value of for specific shapes and specific small numbers of points, [2] [3] [4] Heilbronn was concerned instead about its asymptotic behavior: if the shape is held fixed, but varies, how does the area of the smallest triangle vary with ? That is, Heilbronn's question concerns the growth rate of , as a function of . For any two shapes and , the numbers and differ only by a constant factor, as any placement of points within can be scaled by an affine transformation to fit within , changing the minimum triangle area only by a constant. Therefore, in bounds on the growth rate of that omit the constant of proportionality of that growth, the choice of is irrelevant and the subscript may be omitted. [1]

Heilbronn's conjecture and its disproof

Heilbronn conjectured prior to 1951 that the minimum triangle area always shrinks rapidly as a function of —more specifically, inversely proportional to the square of . [1] [lower-alpha 2] In terms of big O notation, this can be expressed as the bound

Solutions to the no-three-in-line problem, large sets of grid points with no three collinear points, can be scaled into a unit square with minimum triangle area
O
(
1
/
n
2
)
{\displaystyle \Omega (1/n^{2})}
. No-three-in-line.svg
Solutions to the no-three-in-line problem, large sets of grid points with no three collinear points, can be scaled into a unit square with minimum triangle area .

In the other direction, Paul Erdős found examples of point sets with minimum triangle area proportional to , demonstrating that, if true, Heilbronn's conjectured bound could not be strengthened. Erdős formulated the no-three-in-line problem, on large sets of grid points with no three in a line, to describe these examples. As Erdős observed, when is a prime number, the set of points on an integer grid (for ) have no three collinear points, and therefore by Pick's formula each of the triangles they form has area at least . When these grid points are scaled to fit within a unit square, their smallest triangle area is proportional to , matching Heilbronn's conjectured upper bound. If is not prime, then a similar construction using a prime number close to achieves the same asymptotic lower bound. [1] [lower-alpha 3]

Komlós, Pintz & Szemerédi (1982) eventually disproved Heilbronn's conjecture, by using the probabilistic method to find sets of points whose smallest triangle area is larger than the ones found by Erdős. Their construction involves the following steps:

The area resulting from their construction grows asymptotically as [5]

The proof can be derandomized, leading to a polynomial-time algorithm for constructing placements with this triangle area. [6]

Upper bounds

Every set of points in the unit square forms a triangle of area at most inversely proportional to . One way to see this is to triangulate the convex hull of the given point set , and choose the smallest of the triangles in the triangulation. Another is to sort the points by their -coordinates, and to choose the three consecutive points in this ordering whose -coordinates are the closest together. In the first paper published on the Heilbronn triangle problem, in 1951, Klaus Roth proved a stronger upper bound on , of the form [1]

The best bound known to date is of the form

for some constant , proven by Komlós, Pintz & Szemerédi (1981). [7]

A new upper bound equal to was proven by Cohen, Pohoata & Zakharov (2023). [8] [9]

Specific shapes and numbers

Goldberg (1972) has investigated the optimal arrangements of points in a square, for up to 16. [2] Goldberg's constructions for up to six points lie on the boundary of the square, and are placed to form an affine transformation of the vertices of a regular polygon. For larger values of , Comellas & Yebra (2002) improved Goldberg's bounds, and for these values the solutions include points interior to the square. [3] These constructions have been proven optimal for up to seven points. The proof used a computer search to subdivide the configuration space of possible arrangements of the points into 226 different subproblems, and used nonlinear programming techniques to show that in 225 of those cases, the best arrangement was not as good as the known bound. In the remaining case, including the eventual optimal solution, its optimality was proven using symbolic computation techniques. [4]

The following are the best known solutions for 7–12 points in a unit square, found through simulated annealing; [3] the arrangement for seven points is known to be optimal. [4]

Instead of looking for optimal placements for a given shape, one may look for an optimal shape for a given number of points. Among convex shapes with area one, the regular hexagon is the one that maximizes ; for this shape, , with six points optimally placed at the hexagon vertices. [10] The convex shapes of unit area that maximize have . [11]

Variations

There have been many variations of this problem including the case of a uniformly random set of points, for which arguments based on either Kolmogorov complexity or Poisson approximation show that the expected value of the minimum area is inversely proportional to the cube of the number of points. [12] [13] Variations involving the volume of higher-dimensional simplices have also been studied. [14] [15] [16]

Rather than considering simplices, another higher-dimensional version adds another parameter , and asks for placements of points in the unit hypercube that maximize the minimum volume of the convex hull of any subset of points. For these subsets form simplices but for larger values of , relative to , they can form more complicated shapes. When is sufficiently large relative to , randomly placed point sets have minimum -point convex hull volume . No better bound is possible; any placement has points with volume , obtained by choosing some consecutive points in coordinate order. This result has applications in range searching data structures. [17]

See also

Notes

  1. Roth's definition uses slightly different notation, and normalizes the area of the triangle by dividing it by the area of .
  2. The conjecture is credited to Heilbronn in Roth (1951), but without citation to any specific publication.
  3. Erdős's construction was published in Roth (1951), credited to Erdős.
  4. 1 2 3 4 5 Where several minimal-area triangles can be shown without calculation to be equal in area, only one of them is shaded.

Related Research Articles

<span class="mw-page-title-main">Graph coloring</span> Methodic assignment of colors to elements of a graph

In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.

<span class="mw-page-title-main">Kakeya set</span> Shape containing unit line segments in all directions

In mathematics, a Kakeya set, or Besicovitch set, is a set of points in Euclidean space which contains a unit line segment in every direction. For instance, a disk of radius 1/2 in the Euclidean plane, or a ball of radius 1/2 in three-dimensional space, forms a Kakeya set. Much of the research in this area has studied the problem of how small such sets can be. Besicovitch showed that there are Besicovitch sets of measure zero.

<span class="mw-page-title-main">Edge coloring</span> Problem of coloring a graphs edges such that meeting edges do not match

In graph theory, a proper edge coloring of a graph is an assignment of "colors" to the edges of the graph so that no two incident edges have the same color. For example, the figure to the right shows an edge coloring of a graph by the colors red, blue, and green. Edge colorings are one of several different types of graph coloring. The edge-coloring problem asks whether it is possible to color the edges of a given graph using at most k different colors, for a given value of k, or with the fewest possible colors. The minimum required number of colors for the edges of a given graph is called the chromatic index of the graph. For example, the edges of the graph in the illustration can be colored by three colors but cannot be colored by two colors, so the graph shown has chromatic index three.

<span class="mw-page-title-main">Klaus Roth</span> British mathematician

Klaus Friedrich Roth was a German-born British mathematician who won the Fields Medal for proving Roth's theorem on the Diophantine approximation of algebraic numbers. He was also a winner of the De Morgan Medal and the Sylvester Medal, and a Fellow of the Royal Society.

<span class="mw-page-title-main">No-three-in-line problem</span> Geometry problem on grid points

The no-three-in-line problem in discrete geometry asks how many points can be placed in the grid so that no three points lie on the same line. The problem concerns lines of all slopes, not only those aligned with the grid. It was introduced by Henry Dudeney in 1900. Brass, Moser, and Pach call it "one of the oldest and most extensively studied geometric questions concerning lattice points".

<span class="mw-page-title-main">Divisor summatory function</span>

In number theory, the divisor summatory function is a function that is a sum over the divisor function. It frequently occurs in the study of the asymptotic behaviour of the Riemann zeta function. The various studies of the behaviour of the divisor function are sometimes called divisor problems.

<span class="mw-page-title-main">K-set (geometry)</span> Points separated from others by a line

In discrete geometry, a -set of a finite point set in the Euclidean plane is a subset of elements of that can be strictly separated from the remaining points by a line. More generally, in Euclidean space of higher dimensions, a -set of a finite point set is a subset of elements that can be separated from the remaining points by a hyperplane. In particular, when , the line or hyperplane that separates a -set from the rest of is a halving line or halving plane.

<span class="mw-page-title-main">Sunflower (mathematics)</span> Collection of sets in which every two sets have the same intersection

In the mathematical fields of set theory and extremal combinatorics, a sunflower or -system is a collection of sets whose pairwise intersection is constant. This constant intersection is called the kernel of the sunflower.

In discrete geometry, the Erdős distinct distances problem states that every set of points in the plane has a nearly-linear number of distinct distances. It was posed by Paul Erdős in 1946 and almost proven by Larry Guth and Nets Katz in 2015.

In arithmetic combinatorics, the Erdős–Szemerédi theorem states that for every finite set of integers, at least one of , the set of pairwise sums or , the set of pairwise products form a significantly larger set. More precisely, the Erdős–Szemerédi theorem states that there exist positive constants c and such that for any non-empty set

<span class="mw-page-title-main">Topological graph</span>

In mathematics, a topological graph is a representation of a graph in the plane, where the vertices of the graph are represented by distinct points and the edges by Jordan arcs joining the corresponding pairs of points. The points representing the vertices of a graph and the arcs representing its edges are called the vertices and the edges of the topological graph. It is usually assumed that any two edges of a topological graph cross a finite number of times, no edge passes through a vertex different from its endpoints, and no two edges touch each other. A topological graph is also called a drawing of a graph.

<span class="mw-page-title-main">Opaque set</span> Shape that blocks all lines of sight

In discrete geometry, an opaque set is a system of curves or other set in the plane that blocks all lines of sight across a polygon, circle, or other shape. Opaque sets have also been called barriers, beam detectors, opaque covers, or opaque forests. Opaque sets were introduced by Stefan Mazurkiewicz in 1916, and the problem of minimizing their total length was posed by Frederick Bagemihl in 1959.

In graph theory, a branch of mathematics, the Erdős–Hajnal conjecture states that families of graphs defined by forbidden induced subgraphs have either large cliques or large independent sets. It is named for Paul Erdős and András Hajnal.

In geometry, it is an unsolved conjecture of Hugo Hadwiger that every simplex can be dissected into orthoschemes, using a number of orthoschemes bounded by a function of the dimension of the simplex. If true, then more generally every convex polytope could be dissected into orthoschemes.

In graph theory, the graph removal lemma states that when a graph contains few copies of a given subgraph, then all of the copies can be eliminated by removing a small number of edges. The special case in which the subgraph is a triangle is known as the triangle removal lemma.

<span class="mw-page-title-main">Salem–Spencer set</span> Progression-free set of numbers

In mathematics, and in particular in arithmetic combinatorics, a Salem-Spencer set is a set of numbers no three of which form an arithmetic progression. Salem–Spencer sets are also called 3-AP-free sequences or progression-free sets. They have also been called non-averaging sets, but this term has also been used to denote a set of integers none of which can be obtained as the average of any subset of the other numbers. Salem-Spencer sets are named after Raphaël Salem and Donald C. Spencer, who showed in 1942 that Salem–Spencer sets can have nearly-linear size. However a later theorem of Klaus Roth shows that the size is always less than linear.

<span class="mw-page-title-main">Danzer set</span> Set of points touching all convex bodies of unit volume

In geometry, a Danzer set is a set of points that touches every convex body of unit volume. Ludwig Danzer asked whether it is possible for such a set to have bounded density. Several variations of this problem remain unsolved.

In mathematics, the theory of finite sphere packing concerns the question of how a finite number of equally-sized spheres can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by László Fejes Tóth.

References

  1. 1 2 3 4 5 6 Roth, K. F. (1951), "On a problem of Heilbronn", Journal of the London Mathematical Society , 26 (3): 198–204, doi:10.1112/jlms/s1-26.3.198
  2. 1 2 3 Goldberg, Michael (1972), "Maximizing the smallest triangle made by points in a square", Mathematics Magazine , 45 (3): 135–144, doi:10.2307/2687869, JSTOR   2687869, MR   0296816
  3. 1 2 3 Comellas, Francesc; Yebra, J. Luis A. (2002), "New lower bounds for Heilbronn numbers", Electronic Journal of Combinatorics , 9 (1): R6, doi: 10.37236/1623 , MR   1887087
  4. 1 2 3 Zeng, Zhenbing; Chen, Liangyu (2011), "On the Heilbronn optimal configuration of seven points in the square", in Sturm, Thomas; Zengler, Christoph (eds.), Automated Deduction in Geometry: 7th International Workshop, ADG 2008, Shanghai, China, September 22-24, 2008, Revised Papers, Lecture Notes in Computer Science, vol. 6301, Heidelberg: Springer, pp. 196–224, doi:10.1007/978-3-642-21046-4_11, MR   2805061
  5. Komlós, J.; Pintz, J.; Szemerédi, E. (1982), "A lower bound for Heilbronn's problem", Journal of the London Mathematical Society , 25 (1): 13–24, doi:10.1112/jlms/s2-25.1.13, MR   0645860
  6. Bertram-Kretzberg, Claudia; Hofmeister, Thomas; Lefmann, Hanno (2000), "An algorithm for Heilbronn's problem", SIAM Journal on Computing , 30 (2): 383–390, doi:10.1137/S0097539798348870, hdl: 2003/5313 , MR   1769363
  7. Komlós, J.; Pintz, J.; Szemerédi, E. (1981), "On Heilbronn's triangle problem", Journal of the London Mathematical Society , 24 (3): 385–396, doi:10.1112/jlms/s2-24.3.385, MR   0635870
  8. Cohen, Alex; Pohoata, Cosmin; Zakharov, Dmitrii (2023), "A new upper bound for the Heilbronn triangle problem", arXiv: 2305.18253 [math.CO]
  9. Sloman, Leila (September 8, 2023), "The Biggest Smallest Triangle Just Got Smaller", Quanta, retrieved September 9, 2023
  10. Dress, Andreas W. M.; Yang, Lu; Zeng, Zhenbing (1995), "Heilbronn problem for six points in a planar convex body", in Du, Ding-Zhu; Pardalos, Panos M. (eds.), Minimax and Applications, Nonconvex Optim. Appl., vol. 4, Kluwer Acad. Publ., Dordrecht, pp. 173–190, doi:10.1007/978-1-4613-3557-3_13, MR   1376828
  11. Yang, Lu; Zeng, Zhenbing (1995), "Heilbronn problem for seven points in a planar convex body", in Du, Ding-Zhu; Pardalos, Panos M. (eds.), Minimax and Applications, Nonconvex Optim. Appl., vol. 4, Kluwer Acad. Publ., Dordrecht, pp. 191–218, doi:10.1007/978-1-4613-3557-3_14, MR   1376829
  12. Jiang, Tao; Li, Ming; Vitányi, Paul (2002), "The average-case area of Heilbronn-type triangles", Random Structures & Algorithms, 20 (2): 206–219, arXiv: math/9902043 , doi:10.1002/rsa.10024, MR   1884433, S2CID   2079746
  13. Grimmett, G.; Janson, S. (2003), "On smallest triangles", Random Structures & Algorithms, 23 (2): 206–223, doi:10.1002/rsa.10092, S2CID   12272636
  14. Brass, Peter (2005), "An upper bound for the -dimensional analogue of Heilbronn's triangle problem", SIAM Journal on Discrete Mathematics , 19 (1): 192–195, doi:10.1137/S0895480103435810, MR   2178353
  15. Lefmann, Hanno (2008), "Distributions of points in dimensions and large -point simplices", Discrete & Computational Geometry , 40 (3): 401–413, doi: 10.1007/s00454-007-9041-y , MR   2443292
  16. Barequet, Gill; Naor, Jonathan (2006), "Large -D simplices in the -dimensional unit cube", Far East Journal of Applied Mathematics, 24 (3): 343–354, MR   2283483
  17. Chazelle, Bernard (2001), The Discrepancy Method: Randomness and Complexity, Cambridge University Press, p. 266, ISBN   978-0-521-00357-5