Hill differential equation

Last updated

In mathematics, the Hill equation or Hill differential equation is the second-order linear ordinary differential equation

where is a periodic function with minimal period and average zero. By these we mean that for all

and

and if is a number with , the equation must fail for some . [1] It is named after George William Hill, who introduced it in 1886. [2]

Because has period , the Hill equation can be rewritten using the Fourier series of :

Important special cases of Hill's equation include the Mathieu equation (in which only the terms corresponding to n = 0, 1 are included) and the Meissner equation.

Hill's equation is an important example in the understanding of periodic differential equations. Depending on the exact shape of , solutions may stay bounded for all time, or the amplitude of the oscillations in solutions may grow exponentially. [3] The precise form of the solutions to Hill's equation is described by Floquet theory. Solutions can also be written in terms of Hill determinants. [1]

Aside from its original application to lunar stability, [2] the Hill equation appears in many settings including in modeling of a quadrupole mass spectrometer, [4] as the one-dimensional Schrödinger equation of an electron in a crystal, [5] quantum optics of two-level systems, accelerator physics and electromagnetic structures that are periodic in space [6] and/or in time. [7]

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Trigonometric functions</span> Functions of an angle

In mathematics, the trigonometric functions are real functions which relate an angle of a right-angled triangle to ratios of two side lengths. They are widely used in all sciences that are related to geometry, such as navigation, solid mechanics, celestial mechanics, geodesy, and many others. They are among the simplest periodic functions, and as such are also widely used for studying periodic phenomena through Fourier analysis.

<span class="mw-page-title-main">Laplace's equation</span> Second-order partial differential equation

In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties. This is often written as

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, to model the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.

<span class="mw-page-title-main">Fourier series</span> Decomposition of periodic functions into sums of simpler sinusoidal forms

A Fourier series is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series, but not all trigonometric series are Fourier series. By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This application is possible because the derivatives of trigonometric functions fall into simple patterns. Fourier series cannot be used to approximate arbitrary functions, because most functions have infinitely many terms in their Fourier series, and the series do not always converge. Well-behaved functions, for example smooth functions, have Fourier series that converge to the original function. The coefficients of the Fourier series are determined by integrals of the function multiplied by trigonometric functions, described in Common forms of the Fourier series below.

In mathematics and science, a nonlinear system is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.

<span class="mw-page-title-main">Legendre function</span>

In physical science and mathematics, the Legendre functionsPλ, Qλ and associated Legendre functionsPμ
λ
, Qμ
λ
, and Legendre functions of the second kind, Qn, are all solutions of Legendre's differential equation. The Legendre polynomials and the associated Legendre polynomials are also solutions of the differential equation in special cases, which, by virtue of being polynomials, have a large number of additional properties, mathematical structure, and applications. For these polynomial solutions, see the separate Wikipedia articles.

<span class="mw-page-title-main">Airy function</span> Special function in the physical sciences

In the physical sciences, the Airy function (or Airy function of the first kind) Ai(x) is a special function named after the British astronomer George Biddell Airy (1801–1892). The function Ai(x) and the related function Bi(x), are linearly independent solutions to the differential equation

In mathematics and its applications, a Sturm–Liouville problem is a second-order linear ordinary differential equation of the form:

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

<span class="mw-page-title-main">Series expansion</span> Expression of a function as an infinite sum of simpler functions

In mathematics, a series expansion is a technique that expresses a function as an infinite sum, or series, of simpler functions. It is a method for calculating a function that cannot be expressed by just elementary operators.

In mathematics, Mathieu functions, sometimes called angular Mathieu functions, are solutions of Mathieu's differential equation

In mathematics, and specifically in potential theory, the Poisson kernel is an integral kernel, used for solving the two-dimensional Laplace equation, given Dirichlet boundary conditions on the unit disk. The kernel can be understood as the derivative of the Green's function for the Laplace equation. It is named for Siméon Poisson.

<span class="mw-page-title-main">Bessel–Clifford function</span>

In mathematical analysis, the Bessel–Clifford function, named after Friedrich Bessel and William Kingdon Clifford, is an entire function of two complex variables that can be used to provide an alternative development of the theory of Bessel functions. If

<span class="mw-page-title-main">Pendulum (mechanics)</span> Free swinging suspended body

A pendulum is a body suspended from a fixed support so that it swings freely back and forth under the influence of gravity. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back towards the equilibrium position. When released, the restoring force acting on the pendulum's mass causes it to oscillate about the equilibrium position, swinging it back and forth. The mathematics of pendulums are in general quite complicated. Simplifying assumptions can be made, which in the case of a simple pendulum allow the equations of motion to be solved analytically for small-angle oscillations.

<span class="mw-page-title-main">Rotational diffusion</span>

Rotational diffusion is the rotational movement which acts upon any object such as particles, molecules, atoms when present in a fluid, by random changes in their orientations. Whilst the directions and intensities of these changes are statistically random, they do not arise randomly and are instead the result of interactions between particles. One example occurs in colloids, where relatively large insoluble particles are suspended in a greater amount of fluid. The changes in orientation occur from collisions between the particle and the many molecules forming the fluid surrounding the particle, which each transfer kinetic energy to the particle, and as such can be considered random due to the varied speeds and amounts of fluid molecules incident on each individual particle at any given time.

The Prandtl lifting-line theory is a mathematical model in aerodynamics that predicts lift distribution over a three-dimensional wing based on its geometry. It is also known as the Lanchester–Prandtl wing theory.

The Mathieu equation is a linear second-order differential equation with periodic coefficients. The French mathematician, E. Léonard Mathieu, first introduced this family of differential equations, nowadays termed Mathieu equations, in his “Memoir on vibrations of an elliptic membrane” in 1868. "Mathieu functions are applicable to a wide variety of physical phenomena, e.g., diffraction, amplitude distortion, inverted pendulum, stability of a floating body, radio frequency quadrupole, and vibration in a medium with modulated density"

References

  1. 1 2 Magnus, W.; Winkler, S. (2013). Hill's equation. Courier. ISBN   9780486150291.
  2. 1 2 Hill, G.W. (1886). "On the Part of the Motion of Lunar Perigee Which is a Function of the Mean Motions of the Sun and Moon". Acta Math. 8 (1): 1–36. doi: 10.1007/BF02417081 .
  3. Teschl, Gerald (2012). Ordinary Differential Equations and Dynamical Systems. Providence: American Mathematical Society. ISBN   978-0-8218-8328-0.
  4. Sheretov, Ernst P. (April 2000). "Opportunities for optimization of the rf signal applied to electrodes of quadrupole mass spectrometers.: Part I. General theory". International Journal of Mass Spectrometry . 198 (1–2): 83–96. doi:10.1016/S1387-3806(00)00165-2.
  5. Casperson, Lee W. (November 1984). "Solvable Hill equation". Physical Review A . 30: 2749. doi:10.1103/PhysRevA.30.2749.
  6. Brillouin, L. (1946). Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices, McGraw–Hill, New York
  7. Koutserimpas, Theodoros T.; Fleury, Romain (October 2018). "Electromagnetic Waves in a Time Periodic Medium With Step-Varying Refractive Index". IEEE Transactions on Antennas and Propagation . 66 (10): 5300–5307. doi: 10.1109/TAP.2018.2858200 .