Hopf conjecture

Last updated

In mathematics, Hopf conjecture may refer to one of several conjectural statements from differential geometry and topology attributed to Heinz Hopf.

Contents

Positively or negatively curved Riemannian manifolds

The Hopf conjecture is an open problem in global Riemannian geometry. It goes back to questions of Heinz Hopf from 1931. A modern formulation is:

A compact, even-dimensional Riemannian manifold with positive sectional curvature has positive Euler characteristic. A compact, (2d)-dimensional Riemannian manifold with negative sectional curvature has Euler characteristic of sign .

For surfaces, these statements follow from the Gauss–Bonnet theorem. For four-dimensional manifolds, this follows from the finiteness of the fundamental group and Poincaré duality and Euler–Poincaré formula equating for 4-manifolds the Euler characteristic with and Synge's theorem, assuring that the orientation cover is simply connected, so that the Betti numbers vanish . For 4-manifolds, the statement also follows from the Chern–Gauss–Bonnet theorem as noticed by John Milnor in 1955 (written down by Shiing-Shen Chern in 1955. [1] ). For manifolds of dimension 6 or higher the conjecture is open. An example of Robert Geroch had shown that the Chern–Gauss–Bonnet integrand can become negative for . [2] The positive curvature case is known to hold however for hypersurfaces in (Hopf) or codimension two surfaces embedded in . [3] For sufficiently pinched positive curvature manifolds, the Hopf conjecture (in the positive curvature case) follows from the sphere theorem, a theorem which had also been conjectured first by Hopf. One of the lines of attacks is by looking for manifolds with more symmetry. It is particular for example that all known manifolds of positive sectional curvature allow for an isometric circle action. The corresponding vector field is called a killing vector field. The conjecture (for the positive curvature case) has also been proved for manifolds of dimension or admitting an isometric torus action of a k-dimensional torus and for manifolds M admitting an isometric action of a compact Lie group G with principal isotropy subgroup H and cohomogeneity k such that Some references about manifolds with some symmetry are [4] and [5]

On the history of the problem: the first written explicit appearance of the conjecture is in the proceedings of the German Mathematical Society, [6] which is a paper based on talks, Heinz Hopf gave in the spring of 1931 in Fribourg, Switzerland and at Bad Elster in the fall of 1931. Marcel Berger discusses the conjecture in his book, [7] and points to the work of Hopf from the 1920s which was influenced by such type of questions. The conjectures are listed as problem 8 (positive curvature case) and 10 (negative curvature case) in ``Yau's problems" of 1982. [8]

Non-negatively or non-positively curved Riemannian manifolds

There are analogue conjectures if the curvature is allowed to become zero too. The statement should still be attributed to Hopf (for example in a talk given in 1953 in Italy). [9]

A compact, even-dimensional Riemannian manifold with non-negative sectional curvature has non-negative Euler characteristic. A compact, (2d)-dimensional Riemannian manifold with non-positive sectional curvature has Euler characteristic of sign or zero.

This version was stated as such as Question 1 in the paper [10] or then in a paper of Chern. [11]

An example for which the conjecture is confirmed is for the product of 2-dimensional manifolds with curvature sign . As the Euler characteristic satisfies which has the sign , the sign conjecture is confirmed in that case (if for all k, then and if for all k, then for even d and for odd d, and if one of the is zero, then ).

Self-maps of degree 1

Hopf asked whether every continuous self-map of an oriented closed manifold of degree 1 is necessarily a homotopy equivalence. [12]

It is easy to see that any map of degree 1 induces a surjection on ; if not, then factors through a non-trivial covering space, contradicting the degree-1 assumption.

This implies that the conjecture holds for Hopfian groups, as for them one then gets that is an isomorphism on and thus a homotopy equivalence.

There are, however, some non-Hopfian groups.

Product conjecture for the product of two spheres

Another famous question of Hopf is the Hopf product conjecture:

Can the 4-manifold carry a metric with positive curvature?

The conjecture was popularized in the book of Gromoll, Klingenberg and Meyer from 1968, [13] and was prominently displayed as Problem 1 in Yau's list of problems. [8] Shing-Tung Yau formulated there an interesting new observation (which could be reformulated as a conjecture).

One does not know any example of a compact, simply-connected manifold of nonnegative sectional curvature which does not admit a metric of strictly positive curvature.

At present, the 4-sphere and the complex projective plane are the only simply-connected 4-manifolds which are known to admit a metric of positive curvature. Wolfgang Ziller once conjectured this might be the full list and that in dimension 5, the only simply-connected 5-manifold of positive curvature is the 5-sphere . [14] Of course, solving the Hopf product conjecture would settle the Yau question. Also the Ziller conjecture that and are the only simply connected positive curvature 4-manifolds would settle the Hopf product conjecture. Back to the case : it is known from work of Jean-Pierre Bourguignon that in the neighborhood of the product metric, there is no metric of positive curvature. [15] It is also known from work of Alan Weinstein that if a metric is given on exists with positive curvature, then this Riemannian manifold can not be embedded in . [16] (It follows already from a result of Hopf that an embedding in is not possible as then the manifold has to be a sphere.) A general reference for manifolds with non-negative sectional curvature giving many examples is [17] as well as. [18] A related conjecture is that

A compact symmetric space of rank greater than one cannot carry a Riemannian metric of positive sectional curvature.

This would also imply that admits no Riemannian metric with positive sectional curvature. So, when looking at the evidence and the work done so far, it appears that the Hopf question most likely will be answered as the statement "There is no metric of positive curvature on " because so far, the theorems of Bourguignon (perturbation result near product metric), Hopf (codimension 1), Weinstein (codimension 2) as well as the sphere theorem excluding pinched positive curvature metrics, point towards this outcome. The construction of a positive curvature metric on would certainly be a surprise in global differential geometry, but it is not excluded yet that such a metric exists.

Finally, one can ask why one would be interested in such a special case like the Hopf product conjecture. Hopf himself was motivated by problems from physics. When Hopf started to work in the mid 1920s, the theory of relativity was only 10 years old and it sparked a great deal of interest in differential geometry, especially in global structure of 4-manifolds, as such manifolds appear in cosmology as models of the universe.

Thurston conjecture on aspherical manifolds (extension of Hopf's conjecture)

There is a conjecture which relates to the Hopf sign conjecture but which does not refer to Riemannian geometry at all. Aspherical manifolds are connected manifolds for which all higher homotopy groups disappear. The Euler characteristic then should satisfy the same condition as a negatively curved manifold is conjectured to satisfy in Riemannian geometry:

Suppose M2k is a closed, aspherical manifold of even dimension. Then its Euler characteristic satisfies the inequality

There can not be a direct relation to the Riemannian case as there are aspherical manifolds that are not homeomorphic to a smooth Riemannian manifold with negative sectional curvature.

This topological version of Hopf conjecture is due to William Thurston. Ruth Charney and Michael Davis conjectured that the same inequality holds for a non-positively curved piecewise Euclidean (PE) manifold.

(Unrelated:) Riemannian metrics with no conjugate points

There had been a bit of confusion about the word "Hopf conjecture" as an unrelated mathematician Eberhard Hopf and contemporary of Heinz Hopf worked on topics like geodesic flows. (Eberhard Hopf and Heinz Hopf are unrelated and might never have met even so they were both students of Erhard Schmidt). There is a theorem of Eberhard Hopf stating that if the 2-torus has no conjugate points, then it must be flat (the Gauss curvature is zero everywhere). [19] The theorem of Eberhard Hopf generalized a theorem of Marston Morse and Gustav Hedlund (a PhD student of Morse) from a year earlier. [20] The problem to generalize this to higher dimensions was for some time known as the Hopf conjecture too. In any case, this is now a theorem: A Riemannian metric without conjugate points on the n-dimensional torus is flat. [21]

Related Research Articles

<span class="mw-page-title-main">Differential topology</span> Branch of mathematics

In mathematics, differential topology is the field dealing with the topological properties and smooth properties of smooth manifolds. In this sense differential topology is distinct from the closely related field of differential geometry, which concerns the geometric properties of smooth manifolds, including notions of size, distance, and rigid shape. By comparison differential topology is concerned with coarser properties, such as the number of holes in a manifold, its homotopy type, or the structure of its diffeomorphism group. Because many of these coarser properties may be captured algebraically, differential topology has strong links to algebraic topology.

<span class="mw-page-title-main">Gauss–Bonnet theorem</span> Differential geometry theorem

In the mathematical field of differential geometry, the Gauss–Bonnet theorem is a fundamental formula which links the curvature of a surface to its underlying topology.

<span class="mw-page-title-main">Riemannian geometry</span> Branch of differential geometry

Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, smooth manifolds with a Riemannian metric, i.e. with an inner product on the tangent space at each point that varies smoothly from point to point. This gives, in particular, local notions of angle, length of curves, surface area and volume. From those, some other global quantities can be derived by integrating local contributions.

In differential geometry, the Ricci curvature tensor, named after Gregorio Ricci-Curbastro, is a geometric object which is determined by a choice of Riemannian or pseudo-Riemannian metric on a manifold. It can be considered, broadly, as a measure of the degree to which the geometry of a given metric tensor differs locally from that of ordinary Euclidean space or pseudo-Euclidean space.

In Riemannian geometry, the sectional curvature is one of the ways to describe the curvature of Riemannian manifolds. The sectional curvature Kp) depends on a two-dimensional linear subspace σp of the tangent space at a point p of the manifold. It can be defined geometrically as the Gaussian curvature of the surface which has the plane σp as a tangent plane at p, obtained from geodesics which start at p in the directions of σp. The sectional curvature is a real-valued function on the 2-Grassmannian bundle over the manifold.

In the mathematical field of Riemannian geometry, the scalar curvature is a measure of the curvature of a Riemannian manifold. To each point on a Riemannian manifold, it assigns a single real number determined by the geometry of the metric near that point. It is defined by a complicated explicit formula in terms of partial derivatives of the metric components, although it is also characterized by the volume of infinitesimally small geodesic balls. In the context of the differential geometry of surfaces, the scalar curvature is twice the Gaussian curvature, and completely characterizes the curvature of a surface. In higher dimensions, however, the scalar curvature only represents one particular part of the Riemann curvature tensor.

<span class="mw-page-title-main">Pseudo-Riemannian manifold</span> Differentiable manifold with nondegenerate metric tensor

In differential geometry, a pseudo-Riemannian manifold, also called a semi-Riemannian manifold, is a differentiable manifold with a metric tensor that is everywhere nondegenerate. This is a generalization of a Riemannian manifold in which the requirement of positive-definiteness is relaxed.

<span class="mw-page-title-main">Ricci flow</span>

In the mathematical fields of differential geometry and geometric analysis, the Ricci flow, sometimes also referred to as Hamilton's Ricci flow, is a certain partial differential equation for a Riemannian metric. It is often said to be analogous to the diffusion of heat and the heat equation, due to formal similarities in the mathematical structure of the equation. However, it is nonlinear and exhibits many phenomena not present in the study of the heat equation.

<span class="mw-page-title-main">Hyperbolic space</span> Non-Euclidean geometry

In mathematics, hyperbolic space of dimension n is the unique simply connected, n-dimensional Riemannian manifold of constant sectional curvature equal to -1. It is homogeneous, and satisfies the stronger property of being a symmetric space. There are many ways to construct it as an open subset of with an explicitly written Riemannian metric; such constructions are referred to as models. Hyperbolic 2-space, H2, which was the first instance studied, is also called the hyperbolic plane.

In mathematics and especially differential geometry, a Kähler manifold is a manifold with three mutually compatible structures: a complex structure, a Riemannian structure, and a symplectic structure. The concept was first studied by Jan Arnoldus Schouten and David van Dantzig in 1930, and then introduced by Erich Kähler in 1933. The terminology has been fixed by André Weil. Kähler geometry refers to the study of Kähler manifolds, their geometry and topology, as well as the study of structures and constructions that can be performed on Kähler manifolds, such as the existence of special connections like Hermitian Yang–Mills connections, or special metrics such as Kähler–Einstein metrics.

In mathematics, the Chern theorem states that the Euler–Poincaré characteristic of a closed even-dimensional Riemannian manifold is equal to the integral of a certain polynomial of its curvature form.

<span class="mw-page-title-main">Richard S. Hamilton</span> American mathematician

Richard Streit Hamilton is an American mathematician who serves as the Davies Professor of Mathematics at Columbia University. He is known for contributions to geometric analysis and partial differential equations. Hamilton is best known for foundational contributions to the theory of the Ricci flow and the development of a corresponding program of techniques and ideas for resolving the Poincaré conjecture and geometrization conjecture in the field of geometric topology. Grigori Perelman built upon Hamilton's results to prove the conjectures, and was awarded a Millennium Prize for his work. However, Perelman declined the award, regarding Hamilton's contribution as being equal to his own.

Myers's theorem, also known as the Bonnet–Myers theorem, is a celebrated, fundamental theorem in the mathematical field of Riemannian geometry. It was discovered by Sumner Byron Myers in 1941. It asserts the following:

In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space and is a single number determining its local geometry. The sectional curvature is said to be constant if it has the same value at every point and for every two-dimensional tangent plane at that point. For example, a sphere is a surface of constant positive curvature.

In mathematics, in particular in differential geometry, the minimal volume is a number that describes one aspect of a smooth manifold's topology. This topological invariant was introduced by Mikhael Gromov.

In mathematics, a Hadamard manifold, named after Jacques Hadamard — more often called a Cartan–Hadamard manifold, after Élie Cartan — is a Riemannian manifold that is complete and simply connected and has everywhere non-positive sectional curvature. By Cartan–Hadamard theorem all Cartan–Hadamard manifolds are diffeomorphic to the Euclidean space Furthermore it follows from the Hopf–Rinow theorem that every pairs of points in a Cartan–Hadamard manifold may be connected by a unique geodesic segment. Thus Cartan–Hadamard manifolds are some of the closest relatives of

In mathematics, in the field of differential geometry, the Yamabe invariant, also referred to as the sigma constant, is a real number invariant associated to a smooth manifold that is preserved under diffeomorphisms. It was first written down independently by O. Kobayashi and R. Schoen and takes its name from H. Yamabe.

In mathematics, spaces of non-positive curvature occur in many contexts and form a generalization of hyperbolic geometry. In the category of Riemannian manifolds, one can consider the sectional curvature of the manifold and require that this curvature be everywhere less than or equal to zero. The notion of curvature extends to the category of geodesic metric spaces, where one can use comparison triangles to quantify the curvature of a space; in this context, non-positively curved spaces are known as (locally) CAT(0) spaces.

Chern's conjecture for affinely flat manifolds was proposed by Shiing-Shen Chern in 1955 in the field of affine geometry. As of 2018, it remains an unsolved mathematical problem.

References

  1. Chern, Shiing-Shen (1966). "On curvature and characteristic classes of a Riemann manifold". Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg . 20: 117–126. doi:10.1007/BF02960745. MR   0075647.
  2. Robert Geroch, Positive sectional curvatures does not imply positive Gauss-Bonnet integrand, Proceedings of the American Mathematical Society, 54, 1976
  3. Weinstein, Alan (1970). "Positively curved n-manifolds in ". Journal of Differential Geometry . 14 (1): 1–4. doi: 10.4310/jdg/1214429270 . MR   0264562.
  4. Thomas Püttmann and Catherine Searle, The Hopf conjecture for manifolds with low cohomogeneity or high symmetry rank, Proceedings of the American Mathematical Society 130 (2001), no. 1, 163-166.
  5. L. Kennard, "On the Hopf conjecture with symmetry, Geometry & Topology, 17, 2013, pages 563-593
  6. Hopf, Heinz (1932), "Differentialgeometry und topologische Gestalt", Jahresbericht der Deutschen Mathematiker-Vereinigung , 41: 209–228
  7. Berger, Marcel (2003). A panoramic view of Riemannian geometry. Springer. ISBN   3-540-65317-1.
  8. 1 2 Yau, Shing-Tung (1982), "Problem section", Seminar on Differential Geometry, Annals of Mathematics Studies, vol. 102, Princeton, N.J.: Princeton University Press, pp. 669–706, ISBN   0-691-08268-5, MR   0645728
  9. Heinz Hopf, Sulla geometria riemanniana globale della superficie, Rendiconti del Seminario matematico e fisico di Milano, 1953, pages 48-63
  10. R.L. Bishop and S.I. Goldberg, Some implications on the generalized Gauss-Bonnet theorem, Transactions of the American Mathematical Society, 112, pages 508-545, 1964
  11. Shiing-Shen Chern, The geometry of G-structures, Bulletin of the American Mathematical Society, 72, pages 167-2019, 1966
  12. Jean-Claude Hausmann, Geometric Hopfian and non-Hopfian situations. Geometry and topology (Athens, Ga., 1985), 157–166, Lecture Notes in Pure and Appl. Math., 105, Dekker, New York, 1987
  13. Gromoll, Detlef; Klingenberg, Wilhelm; Meyer, Wolfgang (1968). Riemannsche Geometrie im Grossen. Lecture Notes in Mathematics. Vol. 55. Berlin-New York: Springer Verlag. MR   0229177.
  14. Wolfgang Ziller, Riemannian Manifolds with Positive Sectional Curvature, Lecture given in Guanajuato of 2010 in: Geometry of Manifolds with Non-negative Sectional Curvature, Springer, 2014
  15. Bourguignon, Jean-Pierre (1975), "Some constructions related to H. Hopf's conjecture on product manifolds", Differential Geometry, Proceedings of Symposia in Pure Mathematics, vol. 27, Providence, R.I.: American Mathematical Society, pp. 33–37, MR   0380906
  16. Weinstein, Alan (1970). "Positively curved n-manifolds in ". Journal of Differential Geometry . 4 (1): 1–4. doi: 10.4310/jdg/1214429270 . MR   0264562.
  17. Wolfgang Ziller, Examples of Riemannian manifolds with non-negative sectional curvature, Surv. Differ. Geom., 11, pages 63-102, International Press, 2007
  18. C. Escher and W. Ziller, Topology of non-negatively curved manifolds", Annals of Global Analysis and Geometry, 46, pages 23-55, 2014
  19. E. Hopf, Closed Surfaces without conjugate points, Proceedings of the National Academy of Sciences of the United States of America, 34, page 47-51 (1948)
  20. Marston Morse and Gustav A. Hedlund, Manifolds without conjugate points, Transactions of the American Mathematical Society, 51, pages 362-386, 1942
  21. Dmitri Burago and Sergei Ivanov, Riemannian tori without conjugate points are flat, Geometric and Functional Analysis 4 (1994), no. 3, 259-269, doi : 10.1007/BF01896241, MR 1274115.