Hotspot highway

Last updated
The Hotspot Highway HotspotHighway.jpg
The Hotspot Highway

The hotspot highway is a term coined in 2010 by Boston University professor Matthew G. Jackson to describe the area of the South Pacific where the postulated tracks of the Samoa, Macdonald, Rurutu, and Rarotonga hotspots all cross paths with one another. [1] While the concept has stood the test of time the key overlapping hot spot tracks appear to be what are now termed the Macdonald hotspot and Arago hotspot which have 10 million years separation but crossed each others paths just south of Samoa. [2] The volcanics of the highway concept are related to the tectonic implications of the breakup of the Ontong Java-Hikurangi-Manihiki large igneous province and of the Pacific large low-shear-velocity province. [3] The tracks are still being redefined by further research and show for example gaps in the Arago hotspot chain with wrong assignment to it rather than the Samoan chain which means we have now little evidence for a cross over between the two. [4]

All the world's volcanic hotspots Hotspots.jpg
All the world's volcanic hotspots

Geochemical evidence from several volcanoes in the Samoan region is consistent with the argument that older hotspot tracks are present in the Samoan archipelago. Rose Atoll, Malulu, Papatua and Waterwitch seamounts plot the Samoan track and are not geochemically consistent with the other Samoan islands. However Papatua and Waterwitch have evidence that some of their volcanics are related to the Samoan hotspot, Malulu has yet to be extensively sampled, while Rose Atoll composition is quite different to the Samoan hotspot volcanics. [1] [4]

Related Research Articles

<span class="mw-page-title-main">Geography of Samoa</span>

The Samoan archipelago is a chain of 16 islands and numerous seamounts covering 3,123 km2 (1,206 sq mi) in the central South Pacific, south of the equator, about halfway between Hawaii and New Zealand, forming part of Polynesia and of the wider region of Oceania. The islands are Savaiʻi, Upolu, Tutuila, ’Uvea, Taʻū, Ofu, Olosega, Apolima, Manono, Nuʻutele, Niulakita, Nuʻulua, Namua, Fanuatapu, Rose Atoll, Nu'ulopa, as well as the submerged Vailuluʻu, Pasco banks, and Alexa Bank.

<span class="mw-page-title-main">Hawaiian–Emperor seamount chain</span> Pacific Ocean geologic feature

The Hawaiian–Emperor seamount chain is a mostly undersea mountain range in the Pacific Ocean that reaches above sea level in Hawaii. It is composed of the Hawaiian ridge, consisting of the islands of the Hawaiian chain northwest to Kure Atoll, and the Emperor Seamounts: together they form a vast underwater mountain region of islands and intervening seamounts, atolls, shallows, banks and reefs along a line trending southeast to northwest beneath the northern Pacific Ocean. The seamount chain, containing over 80 identified undersea volcanoes, stretches about 6,200 km (3,900 mi) from the Aleutian Trench in the far northwest Pacific to the Kamaʻehuakanaloa Seamount, the youngest volcano in the chain, which lies about 35 kilometres (22 mi) southeast of the Island of Hawaiʻi.

<span class="mw-page-title-main">Pitcairn hotspot</span>

The Pitcairn hotspot is a volcanic hotspot located in the south-central Pacific Ocean. Over the past 11 million years, it has formed the Pitcairn-Gambier hotspot chain. It is responsible for creating the Pitcairn Islands and two large seamounts named Adams and Bounty, as well as atolls at Moruroa, Fangataufa and the Gambier Islands. The hotspot is currently located at Adams and Bounty, which are ~60 kilometers East-Southeast of Pitcairn Island.

<span class="mw-page-title-main">Louisville Ridge</span> Chain of over 70 seamounts in the Southwest Pacific Ocean

The Louisville Ridge, often now referred to as the Louisville Seamount Chain, is an underwater chain of over 70 seamounts located in the Southwest portion of the Pacific Ocean. As one of the longest seamount chains on Earth it stretches some 4,300 km (2,700 mi) from the Pacific-Antarctic Ridge northwest to the Tonga-Kermadec Trench, where it subducts under the Indo-Australian Plate as part of the Pacific Plate. The chains formation is best explained by movement of the Pacific Plate over the Louisville hotspot although others had suggested by leakage of magma from the shallow mantle up through the Eltanin fracture zone, which it follows closely for some of its course.

<span class="mw-page-title-main">Louisville hotspot</span> Volcanic hotspot that formed the Louisville Ridge in the southern Pacific Ocean

The Louisville hotspot is a volcanic hotspot responsible for the volcanic activity that has formed the Louisville Ridge in the southern Pacific Ocean.

<span class="mw-page-title-main">Marquesas hotspot</span> Volcanic hotspot in the Pacific Ocean

The Marquesas hotspot is a volcanic hotspot in the southern Pacific Ocean. It is responsible for the creation of the Marquesas Islands – a group of eight main islands and several smaller ones – and a few seamounts. The islands and seamounts formed between 5.5 and 0.4 million years ago and constitute the northernmost volcanic chain in French Polynesia.

<span class="mw-page-title-main">Samoa hotspot</span> Volcanic hotspot located in the south Pacific Ocean

The Samoa hotspot is a volcanic hotspot located in the south Pacific Ocean. The hotspot model describes a hot upwelling plume of magma through the Earth's crust as an explanation of how volcanic islands are formed. The hotspot idea came from J. Tuzo Wilson in 1963 based on the Hawaiian Islands volcanic chain.

<span class="mw-page-title-main">Macdonald hotspot</span> Volcanic hotspot in the southern Pacific Ocean

The Macdonald hotspot is a volcanic hotspot in the southern Pacific Ocean. The hotspot was responsible for the formation of the Macdonald Seamount, and possibly the Austral-Cook Islands chain. It probably did not generate all of the volcanism in the Austral and Cook Islands as age data imply that several additional hotspots were needed to generate some volcanoes.

<span class="mw-page-title-main">Society hotspot</span> Pacific volcanic hotspot

The Society hotspot is a volcanic hotspot in the south Pacific Ocean which is responsible for the formation of the Society Islands, an archipelago of fourteen volcanic islands and atolls spanning around 720 km of the ocean which formed between 4.5 and <1 Ma.

<span class="mw-page-title-main">Ocean island basalt</span> Volcanic rock

Ocean island basalt (OIB) is a volcanic rock, usually basaltic in composition, erupted in oceans away from tectonic plate boundaries. Although ocean island basaltic magma is mainly erupted as basalt lava, the basaltic magma is sometimes modified by igneous differentiation to produce a range of other volcanic rock types, for example, rhyolite in Iceland, and phonolite and trachyte at the intraplate volcano Fernando de Noronha. Unlike mid-ocean ridge basalts (MORBs), which erupt at spreading centers (divergent plate boundaries), and volcanic arc lavas, which erupt at subduction zones (convergent plate boundaries), ocean island basalts are the result of intraplate volcanism. However, some ocean island basalt locations coincide with plate boundaries like Iceland, which sits on top of a mid-ocean ridge, and Samoa, which is located near a subduction zone.

<span class="mw-page-title-main">Arago hotspot</span> Hotspot in the Pacific Ocean

Arago hotspot is a hotspot in the Pacific Ocean, presently located below the Arago seamount close to the island of Rurutu, French Polynesia.

<span class="mw-page-title-main">Limalok</span> Cretaceous-Paleocene guyot in the Marshall Islands

Limalok is a Cretaceous-Paleocene guyot/tablemount in the southeastern Marshall Islands, one of a number of seamounts in the Pacific Ocean. It was probably formed by a volcanic hotspot in present-day French Polynesia. Limalok lies southeast of Mili Atoll and Knox Atoll, which rise above sea level, and is joined to each of them through a volcanic ridge. It is located at a depth of 1,255 metres (4,117 ft) and has a summit platform with an area of 636 square kilometres (246 sq mi).

<span class="mw-page-title-main">Lo-En</span> Albian–Campanian guyot in the Marshall Islands in the Pacific Ocean

Lo-En or Hess is an Albian–Campanian guyot in the Marshall Islands. One among a number of seamounts in the Pacific Ocean, it was probably formed by a hotspot in what is present-day French Polynesia. Lo-En lies southeast of Eniwetok which rises above sea level, and Lo-En is almost connected to it through a ridge.

Alexa Bank is a seamount in Samoa, northwest of Rotuma. The seamount reaches a depth of 18–21 metres (59–69 ft) below sea level and has the appearance of an atoll with a flat top and steep slopes. Some active coral growth takes place at its top, but if it ever was an active atoll it has now drowned. It was probably formed by the Samoa hotspot 24 million years ago, although older volcanism about 40 million years ago has also been identified.

<span class="mw-page-title-main">Rarotonga hotspot</span> Volcanic hotspot in the southern Pacific Ocean

The Rarotonga hotspot is a volcanic hotspot in the southern Pacific Ocean. The hotspot is claimed to be responsible for the formation of Rarotonga and some volcanics of Aitutaki but an alternative explanation for these islands most recent volcanics has not be ruled out. Recently alternatives to hotspot activity have been offered for several other intra-plate volcanoes that may have been associated with the Rarotonga hotspot hypothesis.

Vlinder Guyot is a guyot in the Western Pacific Ocean. It rises to a depth of 1,500 metres (4,900 ft) and has a flat top covering an area of 40 by 50 kilometres. On top of this flat top lie some volcanic cones, one of which rises to a depth of 551 metres (1,808 ft) below sea level. Vlinder Guyot has noticeable rift zones, including an older and lower volcano to the northwest and Oma Vlinder seamount south.

<span class="mw-page-title-main">Vailuluʻu</span> Volcanic seamount in the Samoa Islands

Vailuluʻu is a volcanic seamount discovered in 1975. It rises from the sea floor to a depth of 593 m (1,946 ft) and is located between Taʻu and Rose islands at the eastern end of the Samoa hotspot chain. The basaltic seamount is considered to mark the current location of the Samoa hotspot. The summit of Vailuluʻu contains a 2 km wide, 400 m deep oval-shaped caldera. Two principal rift zones extend east and west from the summit, parallel to the trend of the Samoan hotspot. A third less prominent rift extends southeast of the summit.

Malumalu, is a volcanic seamount in American Samoa. Together with Savaii, Upolu and Tutuila, it forms a topographic structure close to the Tonga Trench, which lies about 100 kilometres (62 mi) south. Malumalu lies about 66 kilometres (41 mi) south of Ofu island and is also known as "Southeast Bank". It is about 25 kilometres (16 mi) wide at its base and is part of the Mula ridge, which extends to Tutuila.

<span class="mw-page-title-main">Geology of the Cook Islands</span> Geology of Cook Islands

There are fifteen Cook Islands, all being related to extinct volcanoes that have erupted in the volcanic hotspot highway of the south-central Pacific Ocean. Low islands include six of the more northern islands that are atolls, and four of the more southern being uplifted coral islands. Rarotonga, the largest island of the group is a mountainous volcanic island. Rock formations include late Pliocene to more recent volcanics, Oligocene and Miocene reefs and middle Tertiary limestone underlying atolls More recent emergence of the coral reefs is characterised in several cases consistent with sealevel fall at Mangaia, of at least 1.7 m in the last 3400 years. The northern Suwarrow Atoll rim has portions of reef dated to between 4680 and 4310 years B.P. and at the northeast of the atoll the three ridges are dated from the land out at 4220 years B.P., 3420 years B.P. and from 1250 years B.P. On Mitiaro the centre of the reef flat has regions dated 5140–3620 years B.P.

References

  1. 1 2 Jackson, Matthew G.; Hart, Stanley R.; Konter, Jasper G.; Koppers, Anthony A. P.; Staudigel, Hubert; Kurz, Mark D.; Blusztajn, Jerzy; Sinton, John M. (2010). "Samoan hot spot track on a "hot spot highway": Implications for mantle plumes and a deep Samoan mantle source". Geochemistry, Geophysics, Geosystems. 11 (12). doi:10.1029/2010GC003232. ISSN   1525-2027. S2CID   131425199.
  2. Jackson, M. G.; Halldórsson, S. A.; Price, A.; Kurz, M. D.; Konter, J. G.; Koppers, A. A. P.; Day, J. M. D. (2020). "Contrasting Old and Young Volcanism from Aitutaki, Cook Islands: Implications for the Origins of the Cook–Austral Volcanic Chain". Journal of Petrology. 61 (3). doi:10.1093/petrology/egaa037.
  3. Maruyama; Santosh; Zhao (4 June 2006). "Superplume, supercontinent, and post-perovskite: Mantle dynamis and anti-plate tectonics on the Core-Mantle Boundary". Gondwana Research . 11 (1–2): 7–37. Bibcode:2007GondR..11....7M. doi:10.1016/j.gr.2006.06.003.
  4. 1 2 Price, Allison A; Jackson, Matthew G; Blichert-Toft, Janne; Konrad, Kevin; Bizimis, Michael; Koppers, Anthony A P; Konter, Jasper G; Finlayson, Valerie A; Sinton, John M (2022). "Distinguishing Volcanic Contributions to the Overlapping Samoan and Cook-Austral Hotspot Tracks". Journal of Petrology. 63 (5). doi:10.1093/petrology/egac032.