Hydrothermal carbonization

Last updated
Carbon microballs made from glycose via hydrothermal carbonization, that have been processed with CO2 for 6 hours to change surface properties. SEM image from University of Tartu. Fig. 1b.tiff
Carbon microballs made from glycose via hydrothermal carbonization, that have been processed with CO2 for 6 hours to change surface properties. SEM image from University of Tartu.

Hydrothermal carbonization (HTC) (also referred to as "aqueous carbonization at elevated temperature and pressure") is a chemical process for the conversion of organic compounds to structured carbons. It can be used to make a wide variety of nanostructured carbons, simple production of brown coal substitute, synthesis gas, liquid petroleum precursors and humus from biomass with release of energy. Technically the process imitates, within a few hours, the brown coal formation process (German "Inkohlung" literally "coalification") which takes place in nature over enormously longer geological time periods of 50,000 to 50 million years. It was investigated by Friedrich Bergius and first described in 1913. [1]

Contents

Motivation

The carbon efficiency of most processes to convert organic matter to fuel is relatively low. I.e. the proportion of carbon contained in the biomass, which is later contained in the usable end product is relatively low:

ProcessCarbon efficiency
alcoholic fermentation 67%
gasification to H2 or CH460%
gasification and Fischer-Tropsch synthesis 50%
anaerobic conversion to biogas 50%
wood charcoal production30%
production of humus by composting 5% to 10%

In poorly designed systems, the unused carbon escapes into the atmosphere as carbon dioxide, or, when fermented, as methane. Both gases are greenhouse gases with methane even more climate-active on a per molecule basis than CO2. In addition, the heat which is released in these processes is not generally used. Advanced modern systems capture nearly all the gases and use the heat as part of the process or for district heating.

The problem with the production of biodiesel from oil plants is the fact that only the energy contained in the fruit can be used. If the entire plant could be used for fuel production, the energy yield could be increased by a factor of three to five with the same cultivation area when growing fast-growing plants such as willow, poplar, miscanthus, hemp, reeds or forestry, while simultaneously reducing energy, fertilizer and herbicide use, with the possibility of using - for current energy plant cultivation - poor soil. Hydrothermal carbonization makes it possible - similar to the biomass-to-liquid process - to use almost all of the carbon contained in the biomass for fuel generation. It is a new variation of an old field (biomass conversion to biofuel) that has recently been further developed in Germany. [2] It involves moderate temperatures and pressures over an aqueous solution of biomass in a dilute acid for several hours. The resulting matter reportedly captures 100% of the carbon in a "charcoal" powder that could provide feed source for soil amendment (similar to biochar) and further studies in economic nanomaterial production. [3]

Process

Biomass is heated together with water to 180 °C (356 °F) in a pressure vessel, in particular vegetable material (in the following reaction equation, simplified as sugar with the formula C6H12O6). The pressure rises to about 1 megapascal (150 psi). During the reaction, oxonium ions are also formed which reduce the pH to pH 5 and lower. This step can be accelerated by adding a small amount of citric acid. [4] In this case, at low pH values, more carbon passes into the aqueous phase. The effluent reaction is exothermic, that is, energy is released. After 12 hours, the carbon of the reactants is completely reacted, 90 to 99% of the carbon is present as an aqueous sludge of porous brown coal spheres (C6H2O) with pore sizes between 8 and 20 nm as a solid phase, the remaining 1 to 10% of carbon is either dissolved in the aqueous phase or converted to carbon dioxide. The reaction equation for the formation of brown coal is:

The reaction can be stopped in several stages with incomplete elimination of water, giving different intermediate products. After a few minutes, liquid intermediate lipophilic substances are formed, but their handling is very difficult because of their high reactivity. Subsequently, these substances polymerize and peat-like structures are formed, which are present as intermediates after about 8 hours.

Efficiency

As a result of the exothermic reaction of hydrothermal carbonization, about 3/8 of the calorific value of the biomass based on the dry mass is released (with a high lignin, resin and / or oil content at least 1/4). If the process is managed properly, it is possible to use this waste heat from wet biomass to produce dry biocoal and to use some of the converted energy for energy generation.

In a large-scale technical implementation of hydrothermal carbonization of sewage sludge, it has been shown that about 20% of the fuel energy content contained in 90% end-dried HTC coal is required to heat the process. Furthermore, approximately 5% of the generated energy content is necessary for electrical operation of the plant. It has proved particularly beneficial in the case of the HTC process that, with mechanical dehydration, more than 60% of the dry substance content can be achieved in the raw carbon, and thus the energy and equipment expenditure for the final drying of the coal is low compared to conventional drying methods of these slurries. [5]

Compared to sludge digestion with subsequent drying, the energy requirement of the HTC is lower by approximately 20% of the electrical energy and approximately 70% of the thermal energy. The amount of energy produced by the HTC as a storable coal is simultaneously 10% higher. [6] Compared to conventional thermal drying of sewage sludge, the HTC saves 62% of electricity and 69% of thermal energy due to its significantly simpler drainage. [7]

Benefits

This synthesis gas could be used to produce gasoline via the Fischer-Tropsch process. Alternatively, the liquid intermediates that are formed during the incomplete conversion of the biomass could be used for fuel and plastic production.

Problems

Current application intentions

Mexico City started the construction of the first HTC module for the conversion of 23.000 tons of organic waste per year in 2022. The plant is based on the TerraNova HTC technology and includes a pyrolysis plant to provide process heat to the HTC process. [12]

In Phoenixville, Pennsylvania in the US, HTC will be used in the first municipally owned wastewater treatment in North America built by SoMax BioEnergy [13]

In Mezzocorona (TN), Italy, the first HTC in the country was built in late 2019 by CarboREM and it is in service treating the digestate from an existent anaerobic digestion plant (AD). The AD is fed with sludge coming from regional based wineries and dairies. The slurry from HTC plant is then separated by a centrifuge, the HTC liquid is recirculating to the AD plant in order to produce more biogas and nearly 500 ton/y of hydrochar are produced. Subsequently, hydrochar is stabilized and processed by a third company as compost for the re-introduction in agriculture with a circular process.

In Relzow, Germany near Anklam (Mecklenburg-Western Pomerania) an HTC plant was officially inaugurated in the middle of November 2017 in "Innovation Park Vorpommern". [14] AVA is also the first company in the world to establish a HTC plant on industrial level in 2010. [7]

In the Summer of 2016, an HTC plant for the treatment of sewage sludge was put into operation in Jining/China, to produce renewable fuel for the local coal-fired power plant. According to the manufacturer TerraNova Energy, it is in continuous operation with an annual capacity of 14.000 tons. [15]

See also

Literature

Related Research Articles

<span class="mw-page-title-main">Carbon dioxide</span> Chemical compound with formula CO₂

Carbon dioxide is a chemical compound with the chemical formula CO2. It is made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature, and as the source of available carbon in the carbon cycle, atmospheric CO2 is the primary carbon source for life on Earth. In the air, carbon dioxide is transparent to visible light but absorbs infrared radiation, acting as a greenhouse gas. Carbon dioxide is soluble in water and is found in groundwater, lakes, ice caps, and seawater. When carbon dioxide dissolves in water, it forms carbonate and mainly bicarbonate, which causes ocean acidification as atmospheric CO2 levels increase.

Syngas, or synthesis gas, is a mixture of hydrogen and carbon monoxide, in various ratios. The gas often contains some carbon dioxide and methane. It is principally used for producing ammonia or methanol. Syngas is combustible and can be used as a fuel. Historically, it has been used as a replacement for gasoline, when gasoline supply has been limited; for example, wood gas was used to power cars in Europe during WWII.

<span class="mw-page-title-main">Pyrolysis</span> Thermal decomposition of materials

The pyrolysis process is the thermal decomposition of materials at elevated temperatures, often in an inert atmosphere.

<span class="mw-page-title-main">Gasification</span> Form of energy conversion

Gasification is a process that converts biomass- or fossil fuel-based carbonaceous materials into gases, including as the largest fractions: nitrogen (N2), carbon monoxide (CO), hydrogen (H2), and carbon dioxide (CO2). This is achieved by reacting the feedstock material at high temperatures (typically >700 °C), without combustion, via controlling the amount of oxygen and/or steam present in the reaction. The resulting gas mixture is called syngas (from synthesis gas) or producer gas and is itself a fuel due to the flammability of the H2 and CO of which the gas is largely composed. Power can be derived from the subsequent combustion of the resultant gas, and is considered to be a source of renewable energy if the gasified compounds were obtained from biomass feedstock.

<span class="mw-page-title-main">Alternative fuel</span> Fuels from sources other than fossil fuels

Alternative fuels, also known as non-conventional and advanced fuels, are fuels derived from sources other than petroleum. Alternative fuels include gaseous fossil fuels like propane, natural gas, methane, and ammonia; biofuels like biodiesel, bioalcohol, and refuse-derived fuel; and other renewable fuels like hydrogen and electricity.

The Fischer–Tropsch process (FT) is a collection of chemical reactions that converts a mixture of carbon monoxide and hydrogen, known as syngas, into liquid hydrocarbons. These reactions occur in the presence of metal catalysts, typically at temperatures of 150–300 °C (302–572 °F) and pressures of one to several tens of atmospheres. The Fischer–Tropsch process is an important reaction in both coal liquefaction and gas to liquids technology for producing liquid hydrocarbons.

In industrial chemistry, coal gasification is the process of producing syngas—a mixture consisting primarily of carbon monoxide (CO), hydrogen, carbon dioxide, methane, and water vapour —from coal and water, air and/or oxygen.

<span class="mw-page-title-main">Anaerobic digestion</span> Processes by which microorganisms break down biodegradable material in the absence of oxygen

Anaerobic digestion is a sequence of processes by which microorganisms break down biodegradable material in the absence of oxygen. The process is used for industrial or domestic purposes to manage waste or to produce fuels. Much of the fermentation used industrially to produce food and drink products, as well as home fermentation, uses anaerobic digestion.

<span class="mw-page-title-main">Fossil fuel power station</span> Facility that burns fossil fuels to produce electricity

A fossil fuel power station is a thermal power station which burns a fossil fuel, such as coal or natural gas, to produce electricity. Fossil fuel power stations have machinery to convert the heat energy of combustion into mechanical energy, which then operates an electrical generator. The prime mover may be a steam turbine, a gas turbine or, in small plants, a reciprocating gas engine. All plants use the energy extracted from the expansion of a hot gas, either steam or combustion gases. Although different energy conversion methods exist, all thermal power station conversion methods have their efficiency limited by the Carnot efficiency and therefore produce waste heat.

<span class="mw-page-title-main">Methanol economy</span>

The methanol economy is a suggested future economy in which methanol and dimethyl ether replace fossil fuels as a means of energy storage, ground transportation fuel, and raw material for synthetic hydrocarbons and their products. It offers an alternative to the proposed hydrogen economy or ethanol economy, although these concepts are not exclusive. Methanol can be produced from a variety of sources including fossil fuels as well as agricultural products and municipal waste, wood and varied biomass. It can also be made from chemical recycling of carbon dioxide.

Coal liquefaction is a process of converting coal into liquid hydrocarbons: liquid fuels and petrochemicals. This process is often known as "Coal to X" or "Carbon to X", where X can be many different hydrocarbon-based products. However, the most common process chain is "Coal to Liquid Fuels" (CTL).

<span class="mw-page-title-main">Synthetic fuel</span> Fuel from carbon monoxide and hydrogen

Synthetic fuel or synfuel is a liquid fuel, or sometimes gaseous fuel, obtained from syngas, a mixture of carbon monoxide and hydrogen, in which the syngas was derived from gasification of solid feedstocks such as coal or biomass or by reforming of natural gas.

An integrated gasification combined cycle (IGCC) is a technology using a high pressure gasifier to turn coal and other carbon based fuels into pressurized gas—synthesis gas (syngas). It can then remove impurities from the syngas prior to the electricity generation cycle. Some of these pollutants, such as sulfur, can be turned into re-usable byproducts through the Claus process. This results in lower emissions of sulfur dioxide, particulates, mercury, and in some cases carbon dioxide. With additional process equipment, a water-gas shift reaction can increase gasification efficiency and reduce carbon monoxide emissions by converting it to carbon dioxide. The resulting carbon dioxide from the shift reaction can be separated, compressed, and stored through sequestration. Excess heat from the primary combustion and syngas fired generation is then passed to a steam cycle, similar to a combined cycle gas turbine. This process results in improved thermodynamic efficiency, compared to conventional pulverized coal combustion.

Pyrolysis oil, sometimes also known as bio-crude or bio-oil, is a synthetic fuel with limited industrial application and under investigation as substitute for petroleum. It is obtained by heating dried biomass without oxygen in a reactor at a temperature of about 500 °C (900 °F) with subsequent cooling, separation from the aqueous phase and other processes. Pyrolysis oil is a kind of tar and normally contains levels of oxygen too high to be considered a pure hydrocarbon. This high oxygen content results in non-volatility, corrosiveness, partial miscibility with fossil fuels, thermal instability, and a tendency to polymerize when exposed to air. As such, it is distinctly different from petroleum products. Removing oxygen from bio-oil or nitrogen from algal bio-oil is known as upgrading.

<span class="mw-page-title-main">Biochar</span> Lightweight black residue, made of carbon and ashes, after pyrolysis of biomass

Biochar is the lightweight black residue, made of carbon and ashes, remaining after the pyrolysis of biomass, and is a form of charcoal. Biochar is defined by the International Biochar Initiative as "the solid material obtained from the thermochemical conversion of biomass in an oxygen-limited environment". Biochar is a stable solid that is rich in pyrogenic carbon and can endure in soil for thousands of years.

<span class="mw-page-title-main">Biomass (energy)</span> Biological material used as a renewable energy source

Biomass, in the context of energy production, is matter from recently living organisms which is used for bioenergy production. Examples include wood, wood residues, energy crops, agricultural residues including straw, and organic waste from industry and households. Wood and wood residues is the largest biomass energy source today. Wood can be used as a fuel directly or processed into pellet fuel or other forms of fuels. Other plants can also be used as fuel, for instance maize, switchgrass, miscanthus and bamboo. The main waste feedstocks are wood waste, agricultural waste, municipal solid waste, and manufacturing waste. Upgrading raw biomass to higher grade fuels can be achieved by different methods, broadly classified as thermal, chemical, or biochemical.

<span class="mw-page-title-main">Biomass briquettes</span> Fuel source made from green waste

Biomass briquettes are a biofuel substitute made of biodegradable green waste with lower emissions of greenhouses gases and carbon dioxide then traditional fuel sources. This fuel source is used as an alternative for harmful biofuels. Briquettes are used for heating, cooking fuel, and electricity generation usually in developing countries that do not have access to more modern fuel sources. Biomass briquettes have become popular in developed countries due to the accessibility, and eco-friendly impact. The briquettes can be used in the developed countries for producing electricity from steam power by heating water in boilers.

<span class="mw-page-title-main">Bioenergy with carbon capture and storage</span>

Bioenergy with carbon capture and storage (BECCS) is the process of extracting bioenergy from biomass and capturing and storing the carbon, thereby removing it from the atmosphere. BECCS can theoretically be a "negative emissions technology" (NET), although its deployment at the scale considered by many governments and industries can "also pose major economic, technological, and social feasibility challenges; threaten food security and human rights; and risk overstepping multiple planetary boundaries, with potentially irreversible consequences". The carbon in the biomass comes from the greenhouse gas carbon dioxide (CO2) which is extracted from the atmosphere by the biomass when it grows. Energy ("bioenergy") is extracted in useful forms (electricity, heat, biofuels, etc.) as the biomass is utilized through combustion, fermentation, pyrolysis or other conversion methods.

Hydrothermal liquefaction (HTL) is a thermal depolymerization process used to convert wet biomass, and other macromolecules, into crude-like oil under moderate temperature and high pressure. The crude-like oil has high energy density with a lower heating value of 33.8-36.9 MJ/kg and 5-20 wt% oxygen and renewable chemicals. The process has also been called hydrous pyrolysis.

<span class="mw-page-title-main">Carbon capture and utilization</span>

Carbon capture and utilization (CCU) is the process of capturing carbon dioxide (CO2) from industrial processes and transporting it via pipelines to where one intends to use it in industrial processes.

References

  1. Friedrich Carl Rudolf Bergius: Anwendung hoher Drucke bei chemischen Vorgängen und die Nachbildung des Entstehungsprozesses der Steinkohle. W. Knapp, Halle a.S. 1913, OCLC   250146190.
  2. Maria-Magdalena Titirici, Arne Thomas and Markus Antonietti, New J. Chem., 2007, 31, 787-789. "Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?"
  3. Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the 2problem?
  4. Peter Brandt: Die „Hydrothermale Carbonisierung": eine bemerkenswerte Möglichkeit, um die Entstehung von CO2 zu minimieren oder gar zu vermeiden? In: J. Verbr. Lebensm. 4 (2009): S. 151–154, doi : 10.1007/s00003-009-0472-7.
  5. Marc Buttmann: Klimafreundliche Kohle durch HTC von Biomasse. (PDF; 7,0 MB). In: Chemie Ingenieur Technik, 2011, 83, 11, 1890-1896. Retrieved 4 July 2012.
  6. P. Jeitz, O. Deiss: Neue Wege in der Klärschlammaufbereitung. (PDF; 1,1 MB). In: Aqua & Gas. 2012, 4, 42-45. Retrieved 4 July 2012.
  7. 1 2 "::: Weiter :::" (PDF). 2016-08-24. Archived from the original (PDF) on 2016-08-24. Retrieved 2020-09-23.
  8. Tobias Wittmann: Biomasse zu Brennstoff veredeln. Archived 2012-09-11 at archive.today In: Energy 2.0. Ausgabe 01/2011.
  9. Deutsche Phosphor Plattform e.V. "TerraNova® Ultra Phosphorus Recovery Process" (PDF). www.deutsche-phosphor-plattform.de. Archived from the original (PDF) on 2018-10-17. Retrieved 2019-03-25.
  10. Wang, Chenyu; Fan, Yujie; Hornung, Ursel; Zhu, Wei; Dahmen, Nicolaus (2020-01-01). "Char and tar formation during hydrothermal treatment of sewage sludge in subcritical and supercritical water: Effect of organic matter composition and experiments with model compounds". Journal of Cleaner Production. 242: 118586. doi:10.1016/j.jclepro.2019.118586. ISSN   0959-6526.
  11. Heidari, Mohammad; Dutta, Animesh; Acharya, Bishnu; Mahmud, Shohel (2019-12-01). "A review of the current knowledge and challenges of hydrothermal carbonization for biomass conversion". Journal of the Energy Institute. 92 (6): 1779–1799. doi:10.1016/j.joei.2018.12.003. ISSN   1743-9671 via Science Direct.
  12. "Proceso Planta de Carbonización Hidrotermal". YouTube .
  13. "Phoenixville's wastewater treatment plant to get a first-of-its-kind upgrade". WHYY - PBS - NPR.
  14. "HTC plant launch". ipi.ag. Retrieved 2020-09-23.
  15. TerraNova Energy GmbH. "Project Jining - Sludge Drying by TerraNova Energy". TerraNova Energy - Hydrothermal Carbonization. Retrieved 2020-09-23.