IFT140

Last updated
IFT140
Identifiers
Aliases IFT140 , MZSDS, SRTD9, WDTC2, c305C8.4, c380F5.1, gs114, intraflagellar transport 140, RP80
External IDs OMIM: 614620 MGI: 2146906 HomoloGene: 40979 GeneCards: IFT140
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_014714

NM_134126

RefSeq (protein)

NP_055529

NP_598887

Location (UCSC) Chr 16: 1.51 – 1.61 Mb Chr 17: 25.24 – 25.32 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

IFT140, Intraflagellar transport 140 homolog, is a protein that in humans is encoded by the IFT140 gene. The gene product forms a core component of IFT-A complex which is indipensible for retrograde intraflagellar transport within the primary cilium. [5]

Contents

Clinical significance

Mutations in this gene have been associated to cases of skeletal ciliopathy called Mainzer Saldino Syndrome, characterised by skeletal developmental anomalies, retinal degeneration and a fibrocystic renal disease known as nephronophthisis. [6] [7] [8] It has also been described in patients with Jeune Syndrome [9] and isolated Lebers congenital amaurosis in the absence of other syndromic features. [10]

Model organisms

An ENU derived mouse (cauli) carrying homozygous IFT140 alleles (c.2564T>A, p. I855K) was generated at the Murdoch Children's Research Institute in Melbourne, Australia. [9] The cauli mouse presented with mid-gestational lethality, exencephaly, spina bifida, craniofacial dysmorphism, digital anomalies, cardiac anomalies and somite patterning defects. [9] Ectopic hedgehog signalling was demonstrated by wholemount in situ hybridisation in the limb buds and abnormal morphology of the primary cilium within the limb bud was demonstrated by scanning electron microscopy. [9]

A patient with Mainzer Saldino Syndrome carrying compound heterozygous variants in IFT140 had induced pluripotent stem cells reprogrammed and CRISPR gene corrected before differentiating both stem cell lines into kidney organoids for transcriptional comparison. [8] Aside from validating the club shaped morphology of the primary cilia seen in the cauli mouse limb bud within the regenerated nephron tubules of the IFT140c.634G>A/c.2176C>G organoids compared to the IFT140WT/c.2176C>G, bulk RNA sequencing comparison demonstrated significant differences in gene pathways related to apicobasal polarity, cell-cell junctions and axonemal dynein assembly. [8]

Related Research Articles

<span class="mw-page-title-main">Cilium</span> Organelle found on eukaryotic cells

The cilium, is a membrane-bound organelle found on most types of eukaryotic cell. Cilia are absent in bacteria and archaea. The cilium has the shape of a slender threadlike projection that extends from the surface of the much larger cell body. Eukaryotic flagella found on sperm cells and many protozoans have a similar structure to motile cilia that enables swimming through liquids; they are longer than cilia and have a different undulating motion.

<span class="mw-page-title-main">Bardet–Biedl syndrome</span> Medical condition

Bardet–Biedl syndrome (BBS) is a ciliopathic human genetic disorder that produces many effects and affects many body systems. It is characterized by rod/cone dystrophy, polydactyly, central obesity, hypogonadism, and kidney dysfunction in some cases. Historically, slower mental processing has also been considered a principal symptom but is now not regarded as such.

<span class="mw-page-title-main">Intraflagellar transport</span> Cellular process

Intraflagellar transport (IFT) is a bidirectional motility along axoneme microtubules that is essential for the formation (ciliogenesis) and maintenance of most eukaryotic cilia and flagella. It is thought to be required to build all cilia that assemble within a membrane projection from the cell surface. Plasmodium falciparum cilia and the sperm flagella of Drosophila are examples of cilia that assemble in the cytoplasm and do not require IFT. The process of IFT involves movement of large protein complexes called IFT particles or trains from the cell body to the ciliary tip and followed by their return to the cell body. The outward or anterograde movement is powered by kinesin-2 while the inward or retrograde movement is powered by cytoplasmic dynein 2/1b. The IFT particles are composed of about 20 proteins organized in two subcomplexes called complex A and B.

<span class="mw-page-title-main">Meckel–Gruber syndrome</span> Medical condition

Meckel-Gruber syndrome is a rare, lethal ciliopathic genetic disorder, characterized by renal cystic dysplasia, central nervous system malformations, polydactyly (postaxial), hepatic developmental defects, and pulmonary hypoplasia due to oligohydramnios. Meckel–Gruber syndrome is named for Johann Meckel and Georg Gruber.

<span class="mw-page-title-main">Folliculin</span> Protein-coding gene

The tumor suppressor gene FLCN encodes the protein folliculin, also known as Birt–Hogg–Dubé syndrome protein, which functions as an inhibitor of Lactate Dehydrogenase-A and a regulator of the Warburg effect. Folliculin (FLCN) is also associated with Birt–Hogg–Dubé syndrome, which is an autosomal dominant inherited cancer syndrome in which affected individuals are at risk for the development of benign cutaneous tumors (folliculomas), pulmonary cysts, and kidney tumors.

<span class="mw-page-title-main">Nephronophthisis</span> Medical condition

Nephronophthisis is a genetic disorder of the kidneys which affects children. It is classified as a medullary cystic kidney disease. The disorder is inherited in an autosomal recessive fashion and, although rare, is the most common genetic cause of childhood kidney failure. It is a form of ciliopathy. Its incidence has been estimated to be 0.9 cases per million people in the United States, and 1 in 50,000 births in Canada.

<span class="mw-page-title-main">Polycystin 1</span> Family of transport proteins

Polycystin 1 (PC1) is a protein that in humans is encoded by the PKD1 gene. Mutations of PKD1 are associated with most cases of autosomal dominant polycystic kidney disease, a severe hereditary disorder of the kidneys characterised by the development of renal cysts and severe kidney dysfunction.

<span class="mw-page-title-main">PAX2</span> Protein-coding gene in humans

Paired box gene 2, also known as Pax-2, is a protein which in humans is encoded by the PAX2 gene.

<span class="mw-page-title-main">Retinitis pigmentosa GTPase regulator</span> Protein-coding gene in the species Homo sapiens

X-linked retinitis pigmentosa GTPase regulator is a GTPase-binding protein that in humans is encoded by the RPGR gene. The gene is located on the X-chromosome and is commonly associated with X-linked retinitis pigmentosa (XLRP). In photoreceptor cells, RPGR is localized in the connecting cilium which connects the protein-synthesizing inner segment to the photosensitive outer segment and is involved in the modulation of cargo trafficked between the two segments.

<i>TBX5</i> (gene) Protein-coding gene that affects limb development and heart and bone function

T-box transcription factor TBX5, is a protein that in humans is encoded by the TBX5 gene. Abnormalities in the TBX5 gene can result in altered limb development, Holt-Oram syndrome, Tetra-amelia syndrome, and cardiac and skeletal problems.

Conorenal syndrome, is a collection of medical conditions that seem to have a common genetic cause.

<span class="mw-page-title-main">Ciliopathy</span> Genetic disease resulting in abnormal formation or function of cilia

A ciliopathy is any genetic disorder that affects the cellular cilia or the cilia anchoring structures, the basal bodies, or ciliary function. Primary cilia are important in guiding the process of development, so abnormal ciliary function while an embryo is developing can lead to a set of malformations that can occur regardless of the particular genetic problem. The similarity of the clinical features of these developmental disorders means that they form a recognizable cluster of syndromes, loosely attributed to abnormal ciliary function and hence called ciliopathies. Regardless of the actual genetic cause, it is clustering of a set of characteristic physiological features which define whether a syndrome is a ciliopathy.

RPGRIP1L is a human gene.

<span class="mw-page-title-main">MKS1</span> Protein-coding gene in the species Homo sapiens

Meckel syndrome, type 1 also known as MKS1 is a protein that in humans is encoded by the MKS1 gene.

<span class="mw-page-title-main">TMEM216</span> Protein-coding gene in the species Homo sapiens

Transmembrane protein 216 is a protein in humans that is encoded by the TMEM216 gene.

Xaa-Pro aminopeptidase 3, also known as aminopeptidase P3, is an enzyme that in humans is encoded by the XPNPEP3 gene. XPNPEP3 localizes to mitochondria in renal cells and to kidney tubules in a cell type-specific pattern. Mutations in XPNPEP3 gene have been identified as a cause of a nephronophthisis-like disease.

<span class="mw-page-title-main">Sensenbrenner syndrome</span> Medical condition

Sensenbrenner syndrome is a rare multisystem disease first described by Judith A. Sensenbrenner in 1975. It is inherited in an autosomal recessive fashion, and a number of genes appear to be responsible. Three genes responsible have been identified: intraflagellar transport (IFT)122 (WDR10), IFT43—a subunit of the IFT complex A machinery of primary cilia, and WDR35

Ciliogenesis is defined as the building of the cell's antenna or extracellular fluid mediation mechanism. It includes the assembly and disassembly of the cilia during the cell cycle. Cilia are important organelles of cells and are involved in numerous activities such as cell signaling, processing developmental signals, and directing the flow of fluids such as mucus over and around cells. Due to the importance of these cell processes, defects in ciliogenesis can lead to numerous human diseases related to non-functioning cilia. Ciliogenesis may also play a role in the development of left/right handedness in humans.

<span class="mw-page-title-main">Strømme syndrome</span> Rare genetic condition involving intestinal atresia, eye abnormalities and microcephaly

Strømme syndrome is a very rare autosomal recessive genetic condition characterised by intestinal atresia, eye abnormalities and microcephaly. The intestinal atresia is of the "apple-peel" type, in which the remaining intestine is twisted around its main artery. The front third of the eye is typically underdeveloped, and there is usually moderate developmental delay. Less common features include an atrial septal defect, increased muscle tone or skeletal abnormalities. Physical features may include short stature, large, low-set ears, a small jaw, a large mouth, epicanthic folds, or fine, sparse hair.

<span class="mw-page-title-main">Tetratricopeptide repeat domain 21b</span> Protein-coding human gene

Tetratricopeptide repeat domain 21B is a protein that in humans is encoded by the TTC21B gene.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000187535 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000024169 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Stepanek, Ludek; Pigino, Gaia (2016-05-06). "Microtubule doublets are double-track railways for intraflagellar transport trains". Science. 352 (6286): 721–724. Bibcode:2016Sci...352..721S. doi:10.1126/science.aaf4594. ISSN   1095-9203. PMID   27151870. S2CID   206648246.
  6. Schmidts M, Frank V, Eisenberger T, Al Turki S, Bizet AA, Antony D, Rix S, Decker C, Bachmann N, Bald M, Vinke T, Toenshoff B, Di Donato N, Neuhann T, Hartley JL, Maher ER, Bogdanović R, Peco-Antić A, Mache C, Hurles ME, Joksić I, Guć-Šćekić M, Dobricic J, Brankovic-Magic M, Bolz HJ, Pazour GJ, Beales PL, Scambler PJ, Saunier S, Mitchison HM, Bergmann C (May 2013). "Combined NGS approaches identify mutations in the intraflagellar transport gene IFT140 in skeletal ciliopathies with early progressive kidney Disease". Human Mutation. 34 (5): 714–24. doi:10.1002/humu.22294. PMC   4226634 . PMID   23418020.
  7. Perrault, Isabelle; Saunier, Sophie; Hanein, Sylvain; Filhol, Emilie; Bizet, Albane A.; Collins, Felicity; Salih, Mustafa A. M.; Gerber, Sylvie; Delphin, Nathalie (2012-05-04). "Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations". American Journal of Human Genetics. 90 (5): 864–870. doi:10.1016/j.ajhg.2012.03.006. ISSN   1537-6605. PMC   3376548 . PMID   22503633.
  8. 1 2 3 Forbes, Thomas A.; Howden, Sara E.; Lawlor, Kynan; Phipson, Belinda; Maksimovic, Jovana; Hale, Lorna; Wilson, Sean; Quinlan, Catherine; Ho, Gladys (2018-05-03). "Patient-iPSC-Derived Kidney Organoids Show Functional Validation of a Ciliopathic Renal Phenotype and Reveal Underlying Pathogenetic Mechanisms". American Journal of Human Genetics. 102 (5): 816–831. doi:10.1016/j.ajhg.2018.03.014. ISSN   0002-9297. PMC   5986969 . PMID   29706353.
  9. 1 2 3 4 Miller, Kerry A.; Ah-Cann, Casey J.; Welfare, Megan F.; Tan, Tiong Y.; Pope, Kate; Caruana, Georgina; Freckmann, Mary-Louise; Savarirayan, Ravi; Bertram, John F. (August 2013). "Cauli: a mouse strain with an Ift140 mutation that results in a skeletal ciliopathy modelling Jeune syndrome". PLOS Genetics. 9 (8): e1003746. doi: 10.1371/journal.pgen.1003746 . ISSN   1553-7404. PMC   3757063 . PMID   24009529.
  10. Beals, Rodney K.; Weleber, Richard G. (2007). "Conorenal dysplasia: A syndrome of cone-shaped epiphysis, renal disease in childhood, retinitis pigmentosa and abnormality of the proximal femur". American Journal of Medical Genetics Part A. 143A (20): 2444–2447. doi:10.1002/ajmg.a.31948. ISSN   1552-4833. PMID   17853467. S2CID   32559930.