IRAS 05189-2524

Last updated
IRAS 05189-2524
A tale of galactic collisions.jpg
Hubble Space Telescope image of IRAS 05189-2524
Observation data
Constellation Lepus
Right ascension 05h 21m 01.392s
Declination -25d 21m 45.36s
Redshift 0.042750
Heliocentric radial velocity 12,816 Km/s
Distance 603 Mly (185 Mpc)
Apparent magnitude  (V)15.4
Characteristics
Type Pec; ULIRG, Sy2
Size75,000 ly
Apparent size  (V)0.46 x 0.44 arcmin
Notable features Galaxy merger, luminous infrared galaxy
Other designations
PGC 17155, 2MASS J05210139-2521452, AKARI J0521013-252146, MRSS 486-006230, NVSS J052101-252145, 1WGA J0521.0-2521, SWIFT J0521.0-2522, LEDA 17155

IRAS 05189-2524 is a galaxy merger located in the constellation Lepus. It is located 603 million light-years away from the Solar System and has an approximate diameter of 75,000 light-years. [1]

A luminous galaxy

IRAS 05189-2524 is classified as an ultraluminous infrared galaxy (ULIRG), [2] which is formed by two interacting gas-rich spiral galaxies that merged together. [3] Signs left by merging process, included a single bright nucleus and an outer structure consisting one-sided extension of the inner arms, with its tidal tail formed by material ripped from the galaxies by gravitational forces. [4]

IRAS 05189-2524 is one of the brightest local ULIRG in X-ray with a E = 2–10 keV continuum luminosity of ~1043 erg/s [5] This tend to vary overtime in which the E = 0.5–2 keV was relatively constant during the 2001-2002 observation done by XMM Newton and Chandra. But in 2006 study done by Suzaku shows it was a factor of ~30 lower. [6] The galaxy has a power output above 10 times that of our sun, [7] emitting a tremendous amount of light at infrared wavelengths. [4]

Moreover, IRAS 05189-2524 is classified an optical Seyfert 2 galaxy, [6] [8] presenting a hidden broadline region. [9] A study noticed there is ~70% percent of the bolometric luminosity attributed to its active galactic nucleus, [10] thus making it a quasar. It is represented by its dust enshrouded stage [11] which is shed overtime by the nuclei. [11] There is a sign of high-velocity large-scale outflows detached in neutral, ionized and molecular gas phrases. [12]

An observation by XMM Newton and NuSTAR, shows evidence for a blueshifted Fe K absorption feature at E = 7.8 KeV which indicates there is an ultrafast outflow (UFO) with vout = 0.11 ± 0.01c. [6] A relative disk reflection in the broadband X-ray spectrum, shows a highly asymmetric board Fe Kα emission line that extends down to 3 KeV with a Compton scattering component above 10 KeV. [13]

Further studies shows there is a new, quasi-luminous hard X-ray and near-IR spectra in IRAS 05189-2524. The Seyfert nucleus is Compton-thin and the near-IR board lines are seen in transmission, similar to X-rays and the medium has an Aṿ/ɴH ratio that is lower than Galactic. [14] Also, the increase in obscuration at latter approach shows less △Aṿ/△Nн compared to Galactic, thus supporting a correlation between the proximity to the center and properties of obscuring matter. Most of the observed polarization is due to dichroism given the fact, the measured AV is compatible with the broad component of Нα seen in transmission. [14]

There are Na i D emission in the system traces dusty filaments on the near side of an extended active galactic nucleus in IRAS 05189-2524 which has projected velocities up to 2000 km/s. These filaments simultaneously obscure the stellar continuum, serving as complementary probe of the wind, in which they are the strongest in regions of low foreground obscuration. [15]

Related Research Articles

<span class="mw-page-title-main">Ultraluminous X-ray source</span>

An ultraluminous X-ray source (ULX) is an astronomical source of X-rays that is less luminous than an active galactic nucleus but is more consistently luminous than any known stellar process (over 1039 erg/s, or 1032 watts), assuming that it radiates isotropically (the same in all directions). Typically there is about one ULX per galaxy in galaxies which host them, but some galaxies contain many. The Milky Way has not been shown to contain a ULX, although SS 433 may be a possible source. The main interest in ULXs stems from their luminosity exceeding the Eddington luminosity of neutron stars and even stellar black holes. It is not known what powers ULXs; models include beamed emission of stellar mass objects, accreting intermediate-mass black holes, and super-Eddington emission.

Luminous infrared galaxies or LIRGs are galaxies with luminosities, the measurement of brightness, above 1011 L. They are also referred to as submillimeter galaxies (SMGs) through their normal method of detection. LIRGs are more abundant than starburst galaxies, Seyfert galaxies and quasi-stellar objects at comparable luminosity. Infrared galaxies emit more energy in the infrared than at all other wavelengths combined. A LIRG's luminosity is 100 billion times that of the Sun.

<span class="mw-page-title-main">APM 08279+5255</span> Quasar

APM 08279+5255 is a very distant, broad absorption line quasar located in the constellation Lynx. It is magnified and split into multiple images by the gravitational lensing effect of a foreground galaxy through which its light passes. It appears to be a giant elliptical galaxy with a supermassive black hole and associated accretion disk. It possesses large regions of hot dust and molecular gas, as well as regions with starburst activity.

<span class="mw-page-title-main">Ionization cone</span> Astronomical phenomenon

Ionization cones are cones of ionized material extending from active galactic nuclei, predominantly observed in type II Seyfert galaxies. They are detected through their emission of electromagnetic radiation in the visible and infrared parts of the spectrum. The main method of observation is through spectroscopy, using spectral line analysis to measure the shape of the ionized region and the condition of the material such as temperature, density, composition, and degree of ionization.

<span class="mw-page-title-main">Tidal disruption event</span> Pulling apart of a star by tidal forces when it gets too close to a supermassive black hole

A tidal disruption event (TDE) is a transient astronomical source produced when a star passes so close to a supermassive black hole (SMBH) that it is pulled apart by the black hole's tidal force. The star undergoes spaghettification, producing a tidal stream of material that loops around the black hole. Some portion of the stellar material is captured into orbit, forming an accretion disk around the black hole, which emits electromagnetic radiation. In a small fraction of TDEs, a relativistic jet is also produced. As the material in the disk is gradually consumed by the black hole, the TDE fades over several months or years.

<span class="mw-page-title-main">NGC 5643</span> Galaxy in the constellation Lupus

NGC 5643 is an intermediate spiral galaxy in the constellation Lupus. Based on the tip of the red-giant branch distance indicator, it is located at a distance of about 40 million light-years. NGC 5643 has an active galactic nucleus and is a type II Seyfert galaxy.

<span class="mw-page-title-main">NGC 4074</span> Galaxy in the constellation Coma Berenices

NGC 4074 is a peculiar lenticular galaxy located 310 million light-years away in the constellation Coma Berenices. It was discovered by astronomer William Herschel on April 27, 1785 and is a member of the NGC 4065 Group.

Sangeeta Malhotra is an astrophysicist who studies galaxies, their contents, and their effects on the universe around them. The objects she studies range from our own Milky Way galaxy to some of the earliest and most distant known galaxies in the epoch of cosmic dawn.

<span class="mw-page-title-main">Teacup galaxy</span> Low redshift quasar in the constellation Boötes

The Teacup galaxy, also known as the Teacup AGN or SDSS J1430+1339 is a low redshift type 2 quasar, showing an extended loop of ionized gas resembling a handle of a teacup, which was discovered by volunteers of the Galaxy Zoo project and labeled as a Voorwerpje.

<span class="mw-page-title-main">Markarian 273</span> Galaxy in the constellation of Ursa Major

Markarian 273 is a galaxy merger located in the constellation Ursa Major. It is located at a distance of about 500 million light years from Earth, which, given its apparent dimensions, means that Markarian 273 is about 130,000 light years across. It is an ultraluminous infrared galaxy and a Seyfert galaxy.

<span class="mw-page-title-main">MCG -03-04-014</span> Galaxy located in the constellation Cetus

MCG -03-04-014 or PGC 4167, is a spiral galaxy located 450 million light-years in the constellation of Cetus. MCG -03-04-014 is classified as a luminous infrared galaxy, meaning it has high star-formation regions. MCG -03-04-014 has a galactic center that is obscured by dust lanes and presents an abundant supply of molecular gas. The reasons behind the luminosity of this galaxy are debated among astronomers. Some attribute it to recent starbursts, while others point to activity in the galaxies' supermassive black holes. It is also considered that both factors may contribute. The exact cause remains uncertain.

<span class="mw-page-title-main">IRAS F11119+3257</span>

IRAS F11119+3257 or simply as F11119+3257, is a galaxy located in constellation Ursa Major. With a redshift of 0.187580, it has a light travel time distance of 2.5 billion light-years and is considered an ultraluminous infrared galaxy (ULIRG).

<span class="mw-page-title-main">IRAS 09104+4109</span>

IRAS 09104+4109 is a galaxy located in the constellation Lynx. With a redshift of 0.440797, the light travel time for this galaxy, corresponds to 4.8 billion light-years from Earth. It is the brightest cluster galaxy in CDGS 25, also known as WHL J091345.5+405628 and a notable, unique ultraluminous infrared galaxy.

<span class="mw-page-title-main">IRAS 13218+0552</span> Galaxy merger located in the constellation Virgo

IRAS 13218+0552 known as SFRS 263, is a galaxy merger located in the Virgo constellation. Its redshift is 0.202806, putting the object at 2.6 billion light-years away from Earth. It is a Seyfert galaxy and a luminous infrared galaxy.

<span class="mw-page-title-main">PKS 1345+125</span>

PKS 1345+125 known as PKS 1345+12 and 4C +12.50, is an ultraluminous infrared galaxy (ULIG) with an active galactic nucleus, located in the constellation Boötes. With a redshift of 0.121740, the galaxy is located 1.7 billion light-years from Earth.

<span class="mw-page-title-main">7C 1415+2556</span>

7C 1415+2556 also known as 2E 1415+2557 and PGC 1747267, is a BL Lac object with an X-ray flux of >=4×10-13 ergs s-1 cm-2, located in the constellation of Boötes. With a redshift of 0.24, the galaxy is located 3.2 billion light-years from Earth. It was discovered in 1988 as part of a program of optical polarimetry of a complete sample of radio sources.

<span class="mw-page-title-main">RIQ J1336+1725</span>

RIQ J1336+1725 also known as PB 4007 and PG 1333+177, is a quasar located in the constellation of Coma Berenices. At a low redshift of 0.55, the object is located 6.5 billion light-years from Earth. This quasar is known to have a Lyman edge region that is formed by its thermally emitting accretion disk.

<span class="mw-page-title-main">PG 1543+489</span>

PG 1543+489, also known as QSO B1544+4855 and PGC 2325245, is a quasar located in the constellation of Boötes. At the redshift of 0.399, the object is located 4.5 billion light-years away from Earth. It was first discovered in 1983, by researchers who presented 114 objects in the Palomar-Green bright quasar survey, as one of the best studied samples of active galactic nuclei (AGN).

References

  1. "Your NED Search Results". ned.ipac.caltech.edu. Retrieved 2024-05-08.
  2. Sanders, D. B.; Surace, J. A.; Ishida, C. M. (1999). "Ultraluminous Infrared Galaxies". In Barnes, J. E.; Sanders, D. B. (eds.). Galaxy Interactions at Low and High Redshift. Dordrecht: Springer Netherlands. pp. 289–294. doi:10.1007/978-94-011-4665-4_73. ISBN   978-94-011-4665-4.
  3. Nandi, S; Das, M; Dwarakanath, K S. "Tracing the evolution of ultraluminous infrared galaxies into radio galaxies with low frequency radio observations". academic.oup.com. Retrieved 2024-05-08.
  4. 1 2 information@eso.org. "A tale of galactic collisions". www.spacetelescope.org. Retrieved 2024-05-08.
  5. Teng, Stacy H.; Veilleux, Sylvain; Anabuki, Naohisa; Dermer, Charles D.; Gallo, Luigi C.; Nakagawa, Takao; Reynolds, Christopher S.; Sanders, D. B.; Terashima, Yuichi; Wilson, Andrew S. (2009-01-09). "SUZAKUOBSERVATIONS OF LOCAL ULTRALUMINOUS INFRARED GALAXIES". The Astrophysical Journal. 691 (1): 261–276. Bibcode:2009ApJ...691..261T. doi:10.1088/0004-637x/691/1/261. ISSN   0004-637X.
  6. 1 2 3 Smith, Robyn N.; Tombesi, Francesco; Veilleux, Sylvain; Lohfink, Anne M.; Luminari, Alfredo (2019-12-10). "Discovery of an X-Ray Quasar Wind Driving the Cold Gas Outflow in the Ultraluminous Infrared Galaxy IRAS F05189-2524". The Astrophysical Journal. 887 (1): 69. arXiv: 1910.14583 . Bibcode:2019ApJ...887...69S. doi: 10.3847/1538-4357/ab4ef8 . ISSN   0004-637X.
  7. Murphy, Thomas Williams (2000). Ultraluminous Infrared Galaxies: Power Sources and Ages Along the Merger Sequence (phd thesis). California Institute of Technology.
  8. Veilleux, Sylvain; Kim, D.-C.; Sanders, D. B. (1999-09-01). "Optical Spectroscopy of the IRAS 1 Jy Sample of Ultraluminous Infrared Galaxies". The Astrophysical Journal. 522 (1): 113. arXiv: astro-ph/9904149 . Bibcode:1999ApJ...522..113V. doi:10.1086/307634. ISSN   0004-637X.
  9. Veilleux, Sylvain; Sanders, D. B.; Kim, D.-C. (September 1999). "New Results from a Near-Infrared Search for Hidden Broad-Line Regions in Ultraluminous Infrared Galaxies". The Astrophysical Journal. 522 (1): 139–156. arXiv: astro-ph/9904148 . Bibcode:1999ApJ...522..139V. doi:10.1086/307635. ISSN   0004-637X.
  10. Veilleux, S.; Rupke, D. S. N.; Kim, D.-C.; Genzel, R.; Sturm, E.; Lutz, D.; Contursi, A.; Schweitzer, M.; Tacconi, L. J.; Netzer, H.; Sternberg, A.; Mihos, J. C.; Baker, A. J.; Mazzarella, J. M.; Lord, S. (2009-05-21). "SPITZER QUASAR AND ULIRG EVOLUTION STUDY (QUEST). IV. COMPARISON OF 1 Jy ULTRALUMINOUS INFRARED GALAXIES WITH PALOMAR-GREEN QUASARS". The Astrophysical Journal Supplement Series. 182 (2): 628–666. arXiv: 0905.1577 . Bibcode:2009ApJS..182..628V. doi:10.1088/0067-0049/182/2/628. ISSN   0067-0049.
  11. 1 2 Sanders, D. B.; Soifer, B. T.; Elias, J. H.; Madore, B. F.; Matthews, K.; Neugebauer, G.; Scoville, N. Z. (1988-02-01). "Ultraluminous Infrared Galaxies and the Origin of Quasars". The Astrophysical Journal. 325: 74. Bibcode:1988ApJ...325...74S. doi:10.1086/165983. ISSN   0004-637X.
  12. González-Alfonso, E.; Fischer, J.; Spoon, H. W. W.; Stewart, K. P.; Ashby, M. L. N.; Veilleux, S.; Smith, H. A.; Sturm, E.; Farrah, D.; Falstad, N.; Meléndez, M.; Graciá-Carpio, J.; Janssen, A. W.; Lebouteiller, V. (February 2017). "Molecular Outflows in Local ULIRGs: Energetics from Multitransition OH Analysis". The Astrophysical Journal. 836 (1): 11. arXiv: 1612.08181 . Bibcode:2017ApJ...836...11G. doi: 10.3847/1538-4357/836/1/11 . ISSN   0004-637X.
  13. Xu, Yanjun; Baloković, Mislav; Walton, Dominic J.; Harrison, Fiona A.; García, Javier A.; Koss, Michael J. (2017-02-28). "Evidence for Relativistic Disk Reflection in the Seyfert 1h Galaxy/ULIRG IRAS 05189–2524 Observed by NuSTAR and XMM-Newton". The Astrophysical Journal. 837 (1): 21. arXiv: 1702.00073 . Bibcode:2017ApJ...837...21X. doi: 10.3847/1538-4357/aa5df4 . ISSN   0004-637X.
  14. 1 2 Severgnini, P.; Risaliti, G.; Marconi, A.; Maiolino, R.; Salvati, M. (2001-03-01). "An X-ray and near-IR spectroscopic analysis of the ULIRG IRAS 05189-2524". Astronomy & Astrophysics. 368 (1): 44–51. doi:10.1051/0004-6361:20000522. ISSN   0004-6361.
  15. Rupke, David S. N.; Veilleux, Sylvain (2015-03-12). "SPATIALLY EXTENDED NA i D RESONANT EMISSION AND ABSORPTION IN THE GALACTIC WIND OF THE NEARBY INFRARED-LUMINOUS QUASAR F05189-2524". The Astrophysical Journal. 801 (2): 126. arXiv: 1411.3744 . Bibcode:2015ApJ...801..126R. doi:10.1088/0004-637x/801/2/126. ISSN   1538-4357.