IceMole

Last updated

The IceMole-Team at the airport Pontresina (Field experiment on the Morteratsch Glacier, Switzerland 2010) IceMole-Team.JPG
The IceMole-Team at the airport Pontresina (Field experiment on the Morteratsch Glacier, Switzerland 2010)

IceMole is an autonomous ice research probe, incorporating a new type of ice-melting tip for the exploration of polar regions, glaciers, ice sheets, and extraterrestrial regions, developed by a team from the FH Aachen, a Fachhochschule (university of applied sciences) in Aachen, Germany. The advantage over previous probes is that the IceMole can change its direction and can be recovered after being used. A driving ice screw allows the probe to drill through soil layers and other contaminations in the ice.

Contents

History

The IceMole is being developed using rapid prototyping. As of April 2011, the probe is in its first prototype and it has been designed to carry out the subsurface investigation of terrestrial glaciers and ice sheets. It is planned that future versions of the probe would be suitably adapted for extraterrestrial ice research, e.g. on the polar caps of Mars, Jupiter's moon Europa, or Saturn's moon Enceladus. [1]

The robot resulted from a student project at the Fachbereich Luft- und Raumfahrttechnik (Faculty of Aerospace Engineering) at the FH Aachen, led by Prof. Dr. Bernd Dachwald. [2] [3] The excavation is carried out by both drilling and melting of the ice. In a clean ice core, the probe can analyze the surrounding ice with measuring instruments. [3] While drilling, the surrounding ice is not biologically contaminated. [2]

As of 2011, the project objectives are given as: [3]

Objectives:

  • Terrestrial applications
    • In 2–3 years: in glaciers and ice sheets
    • In 4–6 years: In the ice and the subglacial lakes in Antarctica
  • Extra Terrestrial applications

The project requirements also emphasised the need for maximum reliability, robustness, mobility, environmental security and autonomy. [3]

IceMole 1

Heated tips in probes have been employed since the 1960s but the probes could only drill straight down, could not be recovered from deep intrusions and were halted by buildup of dirt and sediment, which would not permit heat transfer. To overcome these problems, the IceMole combines a screw with a melting tip. [1]

The first prototype IceMole is a pencil-shaped craft that is designed to autonomously deploy and dig itself into ice. It is a square tube of 225 cm2 (34.9 sq in) cross section. It has a 3 kW (4.0 hp) melting head at the tip which has differential heating in different parts. The robot is powered by a power generator on the surface and is attached by means of a cable, which relays the power supply, communication and data signals. The IceMole utilizes a 6 cm (2.4 in) long screw at its heated head that keeps firm contact while drilling with the ice being melted. The IceMole has separately controllable heating elements that can be manipulated to obtain differential heating. The differential heating permits the gradual change of direction. [1] [2] [3]

Interior view of the melting probe IceMole1 IceMole1.JPG
Interior view of the melting probe IceMole1

The ice screw is located at the tip of the melting head and generates a driving force that presses the melting head against the ice. This enables the IceMole to penetrate soil and mud and also leads to a good conductive heat transfer when in contact with the ice. The thermally isolated ice screw transfers ice into the probe, where it can be analyzed in situ. It is planned that instruments will be fitted in the probe that will analyse the ice and send only the results to the surface. [1] [2]

The technical specifications of IceMole1 are given below :

Specifications IceMole1:

  • Melting velocity: max. 0.3 m (1 ft 0 in)/hour
  • Heating elements: 4 × melting head
  • Performance heating elements: the 2,200 W (3.0 hp)
  • Average thermal power: 1,000 W (1.3 hp)
  • Drive motor power: 25 W (0.034 hp)
  • Weight: 30 kg (66 lb)
  • External dimensions: 150 mm (5.9 in) x 150 mm (5.9 in) x 870 mm (34 in)
  • Payload: on-board digital camera

The IceMole team has developed the vehicle without a specific payload in mind. The vehicle has an inner chamber in which sensors and other instruments may be housed. In its recent tests,[ when? ] the IceMole carried an off-the-shelf camera. The team is also designing a fluorescence biosensor detector that could search for organic molecules in the ice. [1] [2]

IceMole 2

Exterior view of the new design IceMole2 IceMole2exterior.JPG
Exterior view of the new design IceMole2

Since October 2010, the IceMole team is working on a redesign of the first IceMole. The Improvements are, amongst others, the optimization of the melting head and a completely newly developed gear. The new melting head has 12 separately controlled heating elements. These 12 cartridge heaters are arranged in a ring inside of the melting head. In addition, it has 2 wall heaters on each side in the rear of the probe. With this addition, the IceMole2 maneuverability improves over that of its predecessor. The new gear has been specially developed for this probe. Thus, the transmission has a higher efficiency and is more lightweight. It is planned to test IceMole2 in the summer of 2012. [2]

The planned technical specifications of IceMole2:[ citation needed ]

Specifications IceMole2:

  • Melting velocity: max. 1 m (3 ft 3 in)/hour
  • Heating elements: 12 × melting head, 2x each side wall
  • Heating Power head: max. 2,400 W (3.2 hp)
  • Heating Power each side wall: max. 600 W (0.80 hp)
  • Drive motor power: 25 W (0.034 hp)
  • Weight: 25 kg (55 lb)
  • External dimensions: 150 mm (5.9 in) x 150 mm (5.9 in) x 1,200 mm (47 in)
  • Payload: fluorescence biosensor

The probe has also been designed to drag a series of containers containing sensors which can be jettisoned on command and deployed permanently in specific locations in the ice. The team hopes to eventually work with other researchers that would use IceMole to drop sensors deep in icy environments. While the power supply for the first field trials on a glacier was provided by an external power generator on the surface, it is also planned that the heating power be provided by an on-board power source. [1] [3]

Trials

The first field trials were carried out in the area of the Morteratsch Glacier in Switzerland during the summer of 2010. During the trials on the glacier, the following penetration tests have been successfully performed: [1]

While IceMole moved at a leisurely 30 cm (12 in) per hour during its first trial run, optimal conditions could allow the craft to progress at more than three times that speed. The penetration speed will be increased for the next prototype. [1] [2]

The test results show that the IceMole concept is a viable approach to deliver scientific instruments into deep ice and to recover them afterwards. Another advantage of the IceMole with respect to drilling is that biological contamination can be minimized and the process can be made highly autonomous, so that there is no need for an operator on the surface. [1] [2]

The results were reported at the 2011 Antarctic Science Symposium in Madison, Wisconsin and the European Geosciences Union 2011 held at Vienna, Austria. [2] The next trial run was scheduled to be held in the Northern Hemisphere summer of 2012. [2]

Mission scenario for 2012: Dig a vertical "U" IceMole-Mission2012.jpg
Mission scenario for 2012: Dig a vertical "U"

The planned objectives for the field experiment in 2012 are given below.[ citation needed ]

Mission Profile 2012:
1.)To demonstrate the recoverability of IceMole and its payloads
2.)To dig a horizontal "U"
3.)To dig a vertical "U"
4.)To travel distance of ~ 40 m
5) To function for durations of 50 - 150 hours
6) To undock tether containers

Blood Falls test


Blood Falls was used as the target for testing IceMole in November 2014. This unusual flow of melt water from below the glacier gives scientists access to an environment they could otherwise only explore by drilling (which would also risk contaminating it). Its source is a subglacial pool, of unknown size, which sometimes overflows. Biogeochemical analysis shows that the water is marine in source originally. One hypothesis is that its source may be the remains of an ancient fjord that occupied the Taylor valley in the tertiary period. The ferrous iron dissolved in the water oxidizes as the water reaches the surface, turning the water blood red. [4]

The test returned a clean subglacial sample from the outflow channel from Blood Falls. [5]

Subglacial environments in Antarctica need similar protection protocols to interplanetary missions, [6] and the probe was sterilized to these protocols using hydrogen peroxide and UV sterilization. Also, only the tip of the probe sampled the liquid water directly. [4] [7]

See also

Related Research Articles

<span class="mw-page-title-main">Lake Vostok</span> Antarcticas largest known subglacial lake

Lake Vostok is the largest of Antarctica's almost 400 known subglacial lakes. Lake Vostok is located at the southern Pole of Cold, beneath Russia's Vostok Station under the surface of the central East Antarctic Ice Sheet, which is at 3,488 m (11,444 ft) above mean sea level. The surface of this fresh water lake is approximately 4,000 m (13,100 ft) under the surface of the ice, which places it at approximately 500 m (1,600 ft) below sea level.

<span class="mw-page-title-main">Enceladus</span> Natural satellite orbiting Saturn

Enceladus is the sixth-largest moon of Saturn. It is about 500 kilometers in diameter, about a tenth of that of Saturn's largest moon, Titan. It is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C, far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide range of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

<span class="mw-page-title-main">Ablation</span> Removal of material from an objects surface

Ablation is the removal or destruction of something from an object by vaporization, chipping, erosive processes, or by other means. Examples of ablative materials are described below, including spacecraft material for ascent and atmospheric reentry, ice and snow in glaciology, biological tissues in medicine and passive fire protection materials.

<span class="mw-page-title-main">Jökulhlaup</span> Type of glacial outburst flood

A jökulhlaup is a type of glacial outburst flood. It is an Icelandic term that has been adopted in glaciological terminology in many languages. It originally referred to the well-known subglacial outburst floods from Vatnajökull, Iceland, which are triggered by geothermal heating and occasionally by a volcanic subglacial eruption, but it is now used to describe any large and abrupt release of water from a subglacial or proglacial lake/reservoir.

<span class="mw-page-title-main">Subglacial lake</span> Lake under a glacier

A subglacial lake is a lake that is found under a glacier, typically beneath an ice cap or ice sheet. Subglacial lakes form at the boundary between ice and the underlying bedrock, where gravitational pressure decreases the pressure melting point of ice. Over time, the overlying ice gradually melts at a rate of a few millimeters per year. Meltwater flows from regions of high to low hydraulic pressure under the ice and pools, creating a body of liquid water that can be isolated from the external environment for millions of years.

Lake Ellsworth is a natural freshwater liquid subglacial lake located in West Antarctica under approximately 3.4 km (2.1 mi) of ice. It is approximately 10 km long and is estimated to be 150 m (490 ft) in depth. The lake is named after the American explorer Lincoln Ellsworth. The surface of the lake itself is located over 4,593 feet (1,400 m) below sea level.

<span class="mw-page-title-main">Cryobot</span> Autonomous ice penetrator vehicle

A cryobot or Philberth-probe is a robot that can penetrate water ice. A cryobot uses heat to melt the ice, and gravity to sink downward.

<span class="mw-page-title-main">Exploration of Saturn</span> Overview of the exploration of Saturn

The exploration of Saturn has been solely performed by crewless probes. Three missions were flybys, which formed an extended foundation of knowledge about the system. The Cassini–Huygens spacecraft, launched in 1997, was in orbit from 2004 to 2017.

<span class="mw-page-title-main">Blood Falls</span> Red-colored seep of saltwater flowing from Taylor Glacier in Antarctica

Blood Falls is an outflow of an iron oxide–tainted plume of saltwater, flowing from the tongue of Taylor Glacier onto the ice-covered surface of West Lake Bonney in the Taylor Valley of the McMurdo Dry Valleys in Victoria Land, East Antarctica.

Stone Aerospace is an aerospace engineering firm founded by engineer and explorer Bill Stone, located in Del Valle, a suburb of Austin, Texas.

<span class="mw-page-title-main">Jane K. Hart</span>

Jane K Hart is a Professor of Physical Geography in the School of Geography and Environmental Science at the University of Southampton UK. She has a BSc in Physical Geography from the University of Reading and a PhD in Glaciology from the University of East Anglia. She was Lecturer in Physical Geography at the University of Manchester(1988–89). Currently, she is EGU General Secretary, President of the Quaternary Research Association (QRA) and Chair of the "Funds for Women Graduates".

Enceladus Explorer (EnEx) is a planned interplanetary orbiter and lander mission equipped with a subsurface maneuverable ice melting probe suitable to assess the existence of life on Saturn's moon Enceladus.

Mars habitability analogue environments on Earth are environments that share potentially relevant astrobiological conditions with Mars. These include sites that are analogues of potential subsurface habitats, and deep subsurface habitats.

<span class="mw-page-title-main">Ice drilling</span> Method of drilling through ice

Ice drilling allows scientists studying glaciers and ice sheets to gain access to what is beneath the ice, to take measurements along the interior of the ice, and to retrieve samples. Instruments can be placed in the drilled holes to record temperature, pressure, speed, direction of movement, and for other scientific research, such as neutrino detection.

Martin J. Siegert is a British glaciologist, a professor at Imperial College London, and co-director of the Grantham Institute - Climate Change and Environment.

Scientific ice drilling began in 1840, when Louis Agassiz attempted to drill through the Unteraargletscher in the Alps. Rotary drills were first used to drill in ice in the 1890s, and thermal drilling, with a heated drillhead, began to be used in the 1940s. Ice coring began in the 1950s, with the International Geophysical Year at the end of the decade bringing increased ice drilling activity. In 1966, the Greenland ice sheet was penetrated for the first time with a 1,388 m hole reaching bedrock, using a combination of thermal and electromechanical drilling. Major projects over the following decades brought cores from deep holes in the Greenland and Antarctic ice sheets.

<span class="mw-page-title-main">Spindle (vehicle)</span> Ice penetrating two-stage autonomous underwater vehicle

SPINDLE is a 2-stage autonomous vehicle system consisting of a robotic ice-penetrating carrier vehicle (cryobot) and an autonomous submersible HAUV . The cryobot is designed to descend through an ice body into a sub-surface ocean and deploy the HAUV submersible to conduct long range reconnaissance, life search, and sample collection. The HAUV submersible will return to, and auto-dock with, the cryobot at the conclusion of the mission for subsequent data uplink and sample return to the surface.

The World Is Not Enough (WINE) is a US project developing a refuelable steam engine system for spacecraft propulsion. WINE developed a method of extracting volatiles from ice, ice-rich regolith, and hydrated soils and uses it as steam propulsion which allows the spacecraft to refuel multiple times and have an extraordinary long service lifetime. This would allow a single spacecraft to visit multiple asteroids, comets or several landing locations at an icy world such as the Moon, Mars, Pluto, Enceladus, Ganymede, Europa, etc.

<span class="mw-page-title-main">BRUIE</span> Autonomous underwater vehicle

BRUIE is an autonomous underwater vehicle prototype by NASA's Jet Propulsion Laboratory. The prototype began underwater testing in 2012 and it is meant to eventually explore the interior of water worlds in the Solar System, such as Europa or Enceladus.

<span class="mw-page-title-main">Igor Zotikov</span> Russian glaciologist

Igor Alekseevich Zotikov was a Russian glaciologist, polar explorer and academic. Zotikov was best known for predicting the existence of fresh water lakes under the Antarctic ice sheet, later to be discovered as Lake Vostok. For his efforts he was awarded a glacier named after him, Zotikov Glacier.

References

  1. 1 2 3 4 5 6 7 8 9 Dachwald, Bernd; Changsheng Xu; Feldmann, Marco; Plescher, Engelbert (2011). "Development of a Novel Subsurface Ice Probe and Testing of the First Prototype on the Morteratsch Glacier" (PDF). Geophysical Research Abstracts. European Geosciences Union General Assembly 2011, Vienna, Austria (3 – 8 April 2011). 13.
  2. 1 2 3 4 5 6 7 8 9 10 Mann, Adam (30 April 2011). "The IceMole cometh - Novel design could help probe explore frozen environs on Earth and beyond". Nature News. Nature Publishing Group. doi:10.1038/news.2011.261.
  3. 1 2 3 4 5 6 IceMole team (1 May 2011). "The ice research probe IceMole (translated from German)". Students projects - Luft- und Raumfahrttechnik. Hochschule Aachhen. Archived from the original on 25 July 2011. Retrieved 27 April 2011.
  4. 1 2 Dachwald, Bernd; Mikucki, Jill; Tulaczyk, Slawek; Digel, Ilya; Espe, Clemens; Feldmann, Marco; Francke, Gero; Kowalski, Julia; Xu, Changsheng (2014). "IceMole: a maneuverable probe for clean in situ analysis and sampling of subsurface ice and subglacial aquatic ecosystems". Annals of Glaciology. 55 (65): 14–22. Bibcode:2014AnGla..55...14D. doi: 10.3189/2014AoG65A004 . ISSN   0260-3055.
  5. Brabaw, Kasandra (7 April 2015). "IceMole Drill Built to Explore Saturn's Icy Moon Enceladus Passes Glacier Test". Space.com.
  6. "SCAR's code of conduct for the exploration and research of subglacial aquatic environments" (PDF). XXXIV Antarctic Treaty Consultative Meeting, Buenos Aires, June 20th - July 1st 2011. 7. Exploration protocols should also assume that the subglacial aquatic environments contain living organisms, and precautions should be adopted to prevent any permanent alteration of the biology (including introduction of alien species) or habitat properties of these environments.

    28. Drilling fluids and equipment that will enter the subglacial aquatic environment should be cleaned to the extent practicable, and records should be maintained of sterility tests (e.g., bacterial counts by fluorescence microscopy at the drilling site). As a provisional guideline for general cleanliness, these objects should not contain more microbes than are present in an equivalent volume of the ice that is being drilled through to reach the subglacial environment. This standard should be re-evaluated when new data on subglacial aquatic microbial populations become available
  7. ANDERSON, PAUL SCOTT (29 February 2012). "Exciting New 'Enceladus Explorer' Mission Proposed to Search for Life". Universe Today.