Iddingsite

Last updated
Iddingsite
Igneous rock
Iddingsite.JPG
Olivine weathering to iddingsite
Composition
Olivine, clays, ferrihydrites

Iddingsite is a microcrystalline rock that is derived from alteration of olivine. It is usually studied as a mineral, and consists of a mixture of remnant olivine, clay minerals, iron oxides, and ferrihydrites. Debates over iddingsite's non-definite crystal structure caused it to be de-listed as an official mineral by the IMA; thus, it is properly referred to as a rock.

Contents

Iddingsite forms from the weathering of basalt in the presence of liquid water and can be described[ by whom? ] as a phenocryst, i.e. it has macroscopically visible crystals in a fine-grained groundmass of a porphyritic rock. It is a pseudomorph that has a composition that is constantly transforming from the original olivine, passing through many stages of structural and chemical change to create a fully altered iddingsite.

Because iddingsite is constantly transforming it does not have a definite structure or a definite chemical composition. The chemical formula for iddingsite has been approximated as MgO * Fe2O3 * 3SiO2 * 4 H2O [1] where MgO can be substituted by CaO. The geologic occurrence of iddingsite is limited to extrusive or subvolcanic rocks that are formed by injection of magma near the surface. It is absent from deep-seated rocks and is found on meteorites. As it has been found on Martian meteorites, its ages have been calculated to obtain absolute ages when liquid water was at or near the surface of Mars.

It was named after Joseph P. Iddings, an American petrologist. [1]

Introduction

Iddingsite is a pseudomorph, and during the alteration process the olivine crystals had their internal structure or chemical composition changed, although the external form has been preserved. This is not true for all phases of the alteration of olivine because the atomic arrangement becomes distorted and causes a non-definite structure to form. Iddingsite has a composition that is constantly transforming from the original olivine passing through many stages of structural and chemical change. [2]

Iddingsite has been a subject researched in recent years because of its presence in the Martian meteorites. The formation of iddingsite requires liquid water, giving scientists an estimate as to when there has been liquid water on Mars. [3] Potassium-argon dating of the meteorite samples showed that Mars had water on its surface anywhere from 1300 Ma to 650 Ma ago. [3]

Composition

Iddingsite is a rock that lacks a definite chemical composition, so exact compositions cannot be calculated. An approximated composition for a hypothetical end product of iddingsite has been calculated as being SiO2 = 16%, Al2O3 = 8%, Fe2O3 = 62% and H2O = 14%. Throughout the alteration process of olivine, there is a decrease in SiO2, FeO and MgO and an increase in Al2O3 and H2O. The chemical process associated with the alteration consists of the addition of Fe2O3 and the removal of MgO (Gay and Le Maitre 1961). The chemical formula for iddingsite is approximated as MgO * Fe2O3 * 4 H2O where MgO can be substituted by CaO by a ratio of 1:4. [4] There are also some trace constituents of Na2O and K2O that enter iddingsite as the alteration process progresses. [2]

Geologic occurrence

The geologic occurrence of Iddingsite is limited to extrusive or hypabyssal rocks, and it is absent from deep-seated rocks. Iddingsite is an epimagmatic mineral derived during the final cooling of lava in which it occurs from a reaction between gases, water and olivine. [4] The formation of iddingsite is not dependent on the original composition of the olivine. It is however dependent on oxidation conditions, hydration and the magma from which iddingsite forms must be rich in water vapor. [5] The alteration of olivine to iddingsite occurs in a highly oxidizing environment under low pressure and at intermediate temperatures. Temperature needed for the alteration process has to be above temperatures that could cause the olivine to solidify, but below temperatures that would cause structural reorganization. [2]

Structure

The structure of iddingsite is difficult to characterize because of the complexity of the possible alterations that can occur from olivine. Iddingsite has the tendency to be optically homogeneous which indicates that there is some structural control. Structural rearrangements are controlled by hexagonal sequences of approximately close-packed oxygen sheets. These oxygen layers are perpendicular to the x-axis of an olivine cell. One of the close-packed directions is parallel to the z-axis of an olivine cell. These ion arrangements within olivine control the structural orientation of the alteration products. X-ray diffraction patterns found that there are five structural types of iddingsite that can occur during different stages of alteration. They are: olivine-like structures, goethite-like structures, hematite structures, spinel structures and silicate structures. [2]

Olivine has an orthorhombic structure with a space group of Pbnm. [6] Olivine-like structures represent the stage that breaks down olivine with chemical changes introduced by alterations. [2] These structures have the cell dimensions a = 4.8, b = 10.3 and c = 6.0 Å, a space group Pbnm and a d-spacing of 2.779 Å. Olivine axes are oriented in the following way: a is parallel to X-axis, b is parallel to Y-axis and c is parallel to Z-axis. [6] X-ray diffraction patterns taken from iddingsite vary from true olivine pattern to patterns that are very diffuse spots. This is an indication of a distorted structure caused by atomic replacement creating a distorted atomic arrangement. [2]

Goethite-like structures are common because goethite is in the same space group as olivine. [6] This allows for goethite to grow within the olivine making the close packed planes common for both structures. [2] Goethite-like structures have cell dimensions a=4.6, b= 10.0 and c = 3.0  Å. [6] Diffraction spots caused by goethite are diffuse even though the material is well oriented. These structures are aligned parallel to the original olivine with a-axis (goethite) parallel to a-axis (olivine), b-axis (goethite) parallel to b-axis (olivine) and c-axis (goethite) parallel to c-axis (olivine). [6] The preferred orientation of olivine and goethite are when they are parallel with their z-axis. [2]

Hematite-like structures occur in a similar fashion as goethite. Hematite has a triangular crystal system and experiences twinning by having an approximately hexagonal close-packed oxygen framework and has a structural orientation similar to olivine. [2] When twinning occurs, the orientation of hematite-like iddingsite is as follows: a-axis of olivine is parallel to the c-axis of hematite, the b-axis of olivine is parallel to the +/− [010] plane of hematite and the c-axis of olivine is parallel to the +/− [210] plane of hematite. [6] This hematite structure is very well oriented and occurs because of the high stability of the anion framework and because the cations can be made to migrate throughout the structure. [2]

Spinel structures consist of multiple oxide structures that are cubic and have cubic close packing. The spinel structures have a twined orientation and are controlled by close packed sheets. [2] This twined orientation is can be described as: the a-axis of olivine is parallel to the (111) spinel face. The b-axis of olivine is parallel to +/− (112) and the c-axis of olivine is parallel to +/− (110) spinel face. These alterations tend to be rare in iddingsite but when they are present they show a sharp diffraction spot making them easily identified.

Silicate structures are the most variable among all of the structures discussed. A common silicate structure consists of a hexagonal array of cylinders whose length is parallel to the x-axis of the olivine and the side of the hexagonal cell is parallel to the z-axis of olivine. Diffraction effects caused by this structure can be attributed to the formation of sheet silicate structures that have a very disordered stacking of layers. [2]

Physical properties

Iddingsite is a pseudomorph that usually has crystals rimmed by a thin zone of yellowish brown or greenish cryptocrystalline material. [6] The color of iddingsite varies from red-brown to orange-brown to deep ruby red to orange-red. The color of iddingsite in plane polarized light is the same until the later alteration stages when it turns into a darker color due to the strengthening effect of pleochroism. An increase in beta refractive index, which typically is 1.9 can be seen in most types of iddingsite, as the alteration process proceeds. Iddingsite also exhibits an increase in birefringence and dispersion as the alteration process proceeds.

Some samples that have completed their alterations have miscellaneous cleavage thereby making it not a very good diagnostic tool. Most samples have no cleavage at all. [2] Thin sections from an occurrence near Lismore, New South Wales, Australia, have a lamellar habit with one well developed cleavage and two subsidiary cleavages at right angles to each other. It has an alpha of 1.7 to 1.68 and a gamma of 1.71 to 1.72 and a birefringence of 0.04. [6] On average iddingsite has a density of approximately 2.65 g/cm3 and a hardness of 3 (calcite). [7] Variability in these values are expected due to the differences in crystal structure that can occur from different stages in the alteration process.

Related Research Articles

<span class="mw-page-title-main">Hematite</span> Common iron oxide mineral

Hematite, also spelled as haematite, is a common iron oxide compound with the formula, Fe2O3 and is widely found in rocks and soils. Hematite crystals belong to the rhombohedral lattice system which is designated the alpha polymorph of Fe
2
O
3
. It has the same crystal structure as corundum (Al
2
O
3
) and ilmenite (FeTiO
3
). With this it forms a complete solid solution at temperatures above 950 °C (1,740 °F).

<span class="mw-page-title-main">Mineral</span> Crystalline chemical element or compound formed by geologic processes

In geology and mineralogy, a mineral or mineral species is, broadly speaking, a solid substance with a fairly well-defined chemical composition and a specific crystal structure that occurs naturally in pure form.

<span class="mw-page-title-main">Olivine</span> Magnesium iron silicate solid solution series mineral

The mineral olivine is a magnesium iron silicate with the chemical formula (Mg,Fe)2SiO4. It is a type of nesosilicate or orthosilicate. The primary component of the Earth's upper mantle, it is a common mineral in Earth's subsurface, but weathers quickly on the surface. For this reason, olivine has been proposed as a good candidate for accelerated weathering to sequester carbon dioxide from the Earth's oceans and atmosphere, as part of climate change mitigation. Olivine also has many other historical uses, such as the gemstone peridot, as well as industrial applications like metalworking processes.

<span class="mw-page-title-main">Limonite</span> Hydrated iron oxide mineral

Limonite is an iron ore consisting of a mixture of hydrated iron(III) oxide-hydroxides in varying composition. The generic formula is frequently written as FeO(OH)·nH2O, although this is not entirely accurate as the ratio of oxide to hydroxide can vary quite widely. Limonite is one of the three principal iron ores, the others being hematite and magnetite, and has been mined for the production of iron since at least 2500 BP.

<span class="mw-page-title-main">Wüstite</span> Iron(II) oxide mineral formed under reducing conditions

Wüstite (FeO) is a mineral form of iron(II) oxide found with meteorites and native iron. It has a grey colour with a greenish tint in reflected light. Wüstite crystallizes in the isometric-hexoctahedral crystal system in opaque to translucent metallic grains. It has a Mohs hardness of 5 to 5.5 and a specific gravity of 5.88. Wüstite is a typical example of a non-stoichiometric compound.

<span class="mw-page-title-main">Garnierite</span> Nickel layer silicate

Garnierite is a general name for a green nickel ore which is found in pockets and veins within weathered and serpentinized ultramafic rocks. It forms by lateritic weathering of ultramafic rocks and occurs in many nickel laterite deposits in the world. It is an important nickel ore, having a large weight percent NiO. As garnierite is not a valid mineral name according to the Commission on New Minerals, Nomenclature and Classification (CNMNC), no definite composition or formula has been universally adopted. Some of the proposed compositions are all hydrous Ni-Mg silicates, a general name for the Ni-Mg hydrosilicates which usually occur as an intimate mixture and commonly includes two or more of the following minerals: serpentine, talc, sepiolite, smectite, or chlorite, and Ni-Mg silicates, with or without alumina, that have x-ray diffraction patterns typical of serpentine, talc, sepiolite, chlorite, vermiculite or some mixture of them all.

<span class="mw-page-title-main">Maghemite</span> Iron oxide with a spinel ferrite structure

Maghemite (Fe2O3, γ-Fe2O3) is a member of the family of iron oxides. It has the same formula as hematite, but the same spinel ferrite structure as magnetite (Fe3O4) and is also ferrimagnetic. It is sometimes spelled as "maghaemite".

<span class="mw-page-title-main">Hedenbergite</span>

Hedenbergite, CaFeSi2O6, is the iron rich end member of the pyroxene group having a monoclinic crystal system. The mineral is extremely rarely found as a pure substance, and usually has to be synthesized in a lab. It was named in 1819 after M.A. Ludwig Hedenberg, who was the first to define hedenbergite as a mineral. Contact metamorphic rocks high in iron are the primary geologic setting for hedenbergite. This mineral is unique because it can be found in chondrites and skarns (calc–silicate metamorphic rocks). Since it is a member of the pyroxene family, there is a great deal of interest in its importance to general geologic processes.

<span class="mw-page-title-main">Red beds</span> Sedimentary rocks with ferric oxides

Red beds are sedimentary rocks, typically consisting of sandstone, siltstone, and shale, that are predominantly red in color due to the presence of ferric oxides. Frequently, these red-colored sedimentary strata locally contain thin beds of conglomerate, marl, limestone, or some combination of these sedimentary rocks. The ferric oxides, which are responsible for the red color of red beds, typically occur as a coating on the grains of sediments comprising red beds. Classic examples of red beds are the Permian and Triassic strata of the western United States and the Devonian Old Red Sandstone facies of Europe.

In inorganic chemistry, mineral hydration is a reaction which adds water to the crystal structure of a mineral, usually creating a new mineral, commonly called a hydrate.

Alfred Edward "Ted" Ringwood FRS FAA was an Australian experimental geophysicist and geochemist, and the 1988 recipient of the Wollaston Medal.

<span class="mw-page-title-main">Ferrihydrite</span> Iron oxyhydroxide mineral

Ferrihydrite (Fh) is a widespread hydrous ferric oxyhydroxide mineral at the Earth's surface, and a likely constituent in extraterrestrial materials. It forms in several types of environments, from freshwater to marine systems, aquifers to hydrothermal hot springs and scales, soils, and areas affected by mining. It can be precipitated directly from oxygenated iron-rich aqueous solutions, or by bacteria either as a result of a metabolic activity or passive sorption of dissolved iron followed by nucleation reactions. Ferrihydrite also occurs in the core of the ferritin protein from many living organisms, for the purpose of intra-cellular iron storage.

<span class="mw-page-title-main">Wadsleyite</span> Mineral thought to be abundant in the Earths mantle

Wadsleyite is an orthorhombic mineral with the formula β-(Mg,Fe)2SiO4. It was first found in nature in the Peace River meteorite from Alberta, Canada. It is formed by a phase transformation from olivine (α-(Mg,Fe)2SiO4) under increasing pressure and eventually transforms into spinel-structured ringwoodite (γ-(Mg,Fe)2SiO4) as pressure increases further. The structure can take up a limited amount of other bivalent cations instead of magnesium, but contrary to the α and γ structures, a β structure with the sum formula Fe2SiO4 is not thermodynamically stable. Its cell parameters are approximately a = 5.7 Å, b = 11.71 Å and c = 8.24 Å.

<span class="mw-page-title-main">Ringwoodite</span> High-pressure phase of magnesium silicate

Ringwoodite is a high-pressure phase of Mg2SiO4 (magnesium silicate) formed at high temperatures and pressures of the Earth's mantle between 525 and 660 km (326 and 410 mi) depth. It may also contain iron and hydrogen. It is polymorphous with the olivine phase forsterite (a magnesium iron silicate).

Akimotoite is a rare silicate mineral in the ilmenite group of minerals, with the chemical formula (Mg,Fe)SiO3. It is polymorphous with pyroxene and with bridgmanite, a natural silicate perovskite that is the most abundant mineral in Earth's silicate mantle. Akimotoite has a vitreous luster, is colorless, and has a white or colorless streak. It crystallizes in the trigonal crystal system in space group R3. It is the silicon analogue of geikielite (MgTiO3).

The mineralogy of Mars is the chemical composition of rocks and soil that encompass the surface of Mars. Various orbital crafts have used spectroscopic methods to identify the signature of some minerals. The planetary landers performed concrete chemical analysis of the soil in rocks to further identify and confirm the presence of other minerals. The only samples of Martian rocks that are on Earth are in the form of meteorites. The elemental and atmospheric composition along with planetary conditions is essential in knowing what minerals can be formed from these base parts.

<span class="mw-page-title-main">Picropharmacolite</span>

Picropharmacolite, Ca4Mg(AsO3OH)2(AsO4)2·11H2O, is a rare arsenate mineral. It was named in 1819 from the Greek for bitter, in allusion to its magnesium content, and its chemical similarity to pharmacolite. The mineral irhtemite, Ca4Mg(AsO3OH)2(AsO4)2·4H2O, has the same composition as picropharmacolite, except that it has only four water molecules per formula unit, instead of eleven. It may be formed by the dehydration of picropharmacolite.

Magnetic mineralogy is the study of the magnetic properties of minerals. The contribution of a mineral to the total magnetism of a rock depends strongly on the type of magnetic order or disorder. Magnetically disordered minerals contribute a weak magnetism and have no remanence. The more important minerals for rock magnetism are the minerals that can be magnetically ordered, at least at some temperatures. These are the ferromagnets, ferrimagnets and certain kinds of antiferromagnets. These minerals have a much stronger response to the field and can have a remanence.

Chvaleticeite is a monoclinic hexahydrite manganese magnesium sulfate mineral with formula: (Mn2+, Mg)[SO4]·6(H2O). It occurs in the oxidized zone of manganese silicate deposits with pyrite and rhodochrosite that have undergone regional and contact metamorphism. It is defined as the manganese dominant member of the hexahydrite group.

Yangite (PbMnSi3O8•H2O) is a chain-silicate mineral, first discovered within the Kombat mine in Namibia. The mineral is named after Hexiong Yang, a researcher at the University of Arizona's Department of Geosciences. Yangite was approved as a valid mineral species by the International Mineralogical Association in 2012.

References

  1. 1 2 Iddingsite, Mindat.org , retrieved March 25, 2019
  2. 1 2 3 4 5 6 7 8 9 10 11 12 13 Gay Peter; Le Maitre, R. W. "Some Observations on Iddingsite". American Mineralogist. 46; 1–2, pp. 92–111. 1961.
  3. 1 2 Swindle T. D. et al. "Noble Gases in Iddingsite from the Lafayette meteorite: Evidence for Liquid water on Mars in the last few hundred million years". Meteoritics and Planetary Science 35, pp. 107–115, 2000.
  4. 1 2 Ross, Shannon. "The Origin, Occurrence, Composition and Physical Properties of the Mineral Iddingsite". Proc. U.S. Nat., Mus., 67 1925.
  5. Edwards, Andrew. "The Formation of Iddingsite". American Mineralogist, pp. 277–281, 1938.
  6. 1 2 3 4 5 6 7 8 Brown George. "A structural Study of Iddingsite from New South Wales, Australia". American Mineralogist. 44; 3–4, pp. 251–260, 1959.
  7. David Bartholmy (31 December 2009), "Iddingsite mineral data", Mineralogy database, retrieved 19 July 2012

Additional sources