Idle reduction

Last updated


Idle free zone turn engine off sign Idle free zone - turn engine off sign.jpg
Idle free zone turn engine off sign

Idle reduction describes technologies and practices that minimize the amount of time drivers idle their engines. Avoiding idling time has a multitude of benefits including: savings in fuel and maintenance costs, extending vehicle life, and reducing damaging emissions. An idling engine consumes only enough power to keep itself and its accessories running, therefore, producing no usable power to the drive train.

Contents

For cargo ships, the need to run the ship's engines for power in port is eliminated by techniques collectively described as cold ironing.

Idle reduction equipment is aimed at reducing the amount of energy wasted by idling trucks, rail locomotives or automobiles. When a vehicle's engine is not being used to move the vehicle, it can be shut off entirely — thereby conserving fuel and reducing emissions— while other functions like accessories and lighting are powered by an electrical source other than the vehicle's alternator. Each year, long-duration idling of truck and locomotive engines emits 11 million tons of carbon dioxide, 200,000 tons of oxides of nitrogen, and 5,000 tons of particulate matter into the air. [1]

There are other technologies [2] that can reduce the use of fuel to heat or cool the cab when the vehicle is traditionally idling overnight. These can be battery or fuel powered but in either case, use less fuel, do no harm to the vehicle's engine, and reduce or eliminate emissions. [3] Other vehicles, including police, military, service trucks, news vans, fire trucks, ambulances, and hydraulic bucket trucks can be equipped with mobile power idle reduction systems, similar to a rechargeable battery. The systems are usually installed in the trunk and can provide up to 10 hours of additional power for equipment operation without engine engagement. When used by law enforcement and the military, idle reduction technology increases mission capability by extending operational time and providing increased situational awareness and safety.

Idle reduction is a rapidly growing trend in US federal, state, local and fleet policy.[ citation needed ] Idling contributes significantly to the transportation sector's portion of yearly greenhouse gas emissions. The US Department of Energy is putting forth a huge effort through the Energy Efficiency and Renewable Energy Program to increase public awareness about decreasing petroleum use; idle-reduction being one of the methods. The Alternative Fuels and Advanced Vehicles Data Center is a reliable resource for information regarding idle-reduction methods such as fuel-operated heaters, auxiliary power units and truck stop electrification. [4]

Background and problem

In the public sector, idling is common. Police officers, public works employees, fire fighters, and EMTs who operate city fleet vehicles run them at idle to perform their duties which require them to operate equipment. The emissions generated from these tasks by cities all over the U.S. contribute to the fact that each year U.S. passenger cars, light trucks, medium-duty trucks, and heavy-duty vehicles consume more than 6 billion gallons of diesel fuel and gasoline — without even moving. As fuel prices continue to rise, a major challenge in fleet management is how to keep service vehicles on the road to serve the public while staying within budget. Reducing idle time also reduces emission of carbon dioxide, one of the prime factors in causing global warming. [5] By some estimates, an automobile with a 3-liter engine burns 0.4 gallons of gas per hour of idling, and generates a little over a pound of CO² every 10 minutes. [6]

Idle reduction is particularly significant for vehicles in heavy traffic and trucks at the estimated 5,000 truck stops in the US. [7] Many hybrid electric vehicles employ idle reduction to achieve better fuel economy in traffic. America's fleet of around 500,000 long-haul trucks [8] consumes over a billion gallons (3.8×109 l; 830 million imp gal) of diesel fuel per year. [9] The trucking industry has analyzed the impact of idling on engines, both in terms of maintenance and engine wear costs. Long-duration idling causes more oil and oil filter deterioration and increases the need for more oil and filter changes. Similarly, the longer the idling time, the sooner the engine itself will need to be rebuilt. The trucking industry estimates that long duration idling costs the truck owner $1.13 per day, based on the need for more frequent oil changes and sooner overhaul costs. Services such as AireDock, IdleAire and Shorepower [10] provide power at truck stops to resting truckers who would otherwise need to continue idling during mandatory breaks. Because the United States Department of Transportation mandates that truckers rest for 10 hours after driving for 11 hours, truckers might park at truck stops for several hours. Often they idle their engines during this rest time to provide their sleeper compartments with air conditioning or heating or to run electrical appliances such as refrigerators or televisions.

The problem of anti-idling is most commonly associated with heavy duty diesel engines because they are the biggest contributors when idling. As an example of the need for idling an engine, school bus drivers on a cold morning may go out to their bus and turn it on to warm up the engine in order to provide direct heat to the cabin when they return to their bus to start their morning routes, which brings up two of the main reasons for idling, driver mentality and the need for passenger comfort. This idling period can be considered excessive, though excessive idling is defined and regulated differently in different parts of the country.

In the United States

Policies at the federal level are more focused towards research and development of technologies, economic incentives, and education. The Department of Energy (DOE) is sponsoring several corporate companies in the R&D of new anti-idling technologies with the hope that this technology will be installed and incorporated in the assembly line or possibly at the dealer as an option. [11] The Environmental Protection Agency (EPA) also has many ways to promote idle reduction. The EPA established the SmartWay Transport Partnership that provides information about available anti-idling technologies, possible strategies for idle reduction, and resources for obtaining financing on anti-idling projects. The program also serves as an EnergyStar-like program with a label available to companies that commit “to improve the environmental performance of their freight delivery operations.” [12] The EPA has a national campaign called the Clean School Bus Campaign which works to reduce diesel fuel consumption in school buses across the nation. Several regions were awarded millions of dollars through grant projects including idle-reduction pilot projects.

Various states and localities have passed laws pertaining to idling. Some of the laws are more strict and stringent than others. Thirty-one states currently have some sort of existing regulations pertaining to anti-idling. Of these states, California has the most codes and regulations. The California Air Resources Board has enacted numerous laws that regulate idling in the state. For example, in Virginia, the excessive idling threshold is ten minutes, though, in many west coast states such as Hawaii and California, where there is a larger presence of greener policies in relation to fuel consumption, the thresholds are drastically smaller and may even have no idling tolerance at all. According to Hawaii Administrative Rules §11-60.1-34, no idling is permitted “while the motor vehicle is stationary at a loading zone, parking or servicing area, route terminal, or other off street areas” [13] with a couple of exceptions. “Each year, long-duration idling of truck and locomotive engines consumes over 1 billion US gallons (3,800,000 m3) of diesel fuel and emits 11 million tons of carbon dioxide, 200,000 tons of oxides of nitrogen, and 5,000 tons of particulate matter into the air.” [14]

At the local level, there are many municipalities that have enacted anti-idling regulations. New York is an example of states making their idling policies more strict. In early 2009, New York Mayor Michael Bloomberg signed legislation that reduced the amount of time non-emergency vehicles could idle when they are located near schools. The new legislation reduced the allowed idling time from three minutes to one minute. In addition, the new law authorized the Department of Parks and Recreation and the Department of Sanitation to enforce the new idling laws. Previously, only the police department and the Department of Environmental Protection had this authority. Civilians are also allowed to report violations under the new law. [15] New York's Citizens Air Complaint Program allows citizens to report idling vehicles – citizens get a share of the collected fine. The New York Times reported in 2022 that the program led to a massive increase in complaints against idling vehicles. [16]

In 2017, the City of Palo Alto began considering a proposal to stop drivers from running engines when parked. [17]

Truckers argue for the need for idling to keep their cabins comfortable overnight at truck stops. Further complaints have come from the lack of concurrence among state and local idling laws. This disparity in laws requires truckers travelling across the country to be aware of the local idling laws in every place they visit. Even consistency between state and local laws has been a concern. Some truckers have expressed concern that some idling laws could prevent them from complying with other laws, For example, laws requiring truckers to get a certain amount of uninterrupted rest might be interfered with by anti-idling laws. [15] The transportation blog uShip.com, Ship Happens states that “[anti-idling] laws fail to consider the truckers well-being and place drivers at risk of debilitating fines for noncompliance.” These fines could run as high as $25,000 in Connecticut for idling for more than three minutes. [18]

United Kingdom

Unnecessary vehicle idling is an offence against the Road Traffic (Vehicle Emissions) (Fixed Penalty) (England) Regulations (Statutory Instrument 2002 No. 1808) and may incur fines [19]

The regulations apply in zones designated as Air quality management areas by local authorities. The Department for Environment, Food and Rural Affairs has published a list of local authorities with air quality management areas. [20]

There is similar legislation in Scotland [21] and Wales, [22] but it is unclear whether Northern Ireland has similar regulations. Fines are set at £20, but local authorities may decide to set them higher. However, enforcement is minimal. [23]

Europe

In Europe, vehicles increasingly include a Start-stop system to prevent idling. [ citation needed ]

Hong Kong

Hong Kong introduced an anti-idling bill in 2010. [24]

Technologies

Fuel-operated coolant heaters

Fuel-operated coolant heaters reduce the need to run engines at idle to warm vehicles such as buses. Directly heating the coolant is more fuel-efficient than using the engine's waste heat, reducing fuel consumption and emissions. [25] In general, coolant heaters burn 1/8 as much fuel as an idling engine would, simultaneously emitting 1/20 of the emissions and directing heat significantly faster to the passenger compartment. [26]

Auxiliary power units

Auxiliary power units (APUs) are commonly used on semi-trucks to provide electric power to the cabin at times when the cabin or cargo need to be heated or cooled while the vehicle is not in motion for an extended period of time. This period of time is usually overnight, when the truck driver has parked at a truck stop for some rest. Instead of having to keep the engine idling all night just to maintain the temperature in the cabin, the APU can turn on and provide power. Most commonly, the APU will have its own cooling system, heating system, generator, and air conditioning compressor. Sometimes the APU will be integrated into those components of the semi itself. APUs are also commonly used in police cruisers as an alternative to idling. Since a significant amount of time is spent in the cruiser while stationary, idling becomes a major source of cost to police fleets, though, most police fleets have idling policies. The drawback of APUs on police cruisers is that they are normally kept in the trunk where they take up valuable space.

Truck stop electrification

Federal safety regulations developed by the Federal Motor Carrier Safety Administration, require that truckers must rest ten hours for every eleven hours of consecutive driving. [27] As a result, drivers spend extended periods of time resting and sleeping inside the cabs of their trucks. To maintain comfort and amenities, most long haul truck drivers idle their engines for close to ten hours per day to power their heating systems and air conditioners, generate electricity for on-board appliances, charge their vehicle's batteries, and to warm their engines in colder weather. [28] Given that trucks typically consume 0.8 gallons (3.03 L) of diesel fuel per hour of idling, between 900 and 1,400 gallons (3406 to 5300 L) of fuel are consumed each year per truck, resulting in significant greenhouse gas emissions. [29] Truck-stop electrification (TSE) and auxiliary power unit technologies provide long-haul truckers with the ability to heat, cool, and power additional auxiliary devices at truck stops without requiring them to idle their engines.

The United States Department of Transportation estimates there are approximately 5,000 truck stops on the U.S. highway system that provide overnight parking, restrooms, showers, stores, restaurants and fueling stations. [30] The United States Department of Energy maintains a website that lists current TSE sites throughout the United States. As of October 2013, the website records 115 TSE stations throughout the country. [31]

Truck stop electrification allows a trucker to “plug-in” to power their on and off-board electrical needs. There are two types of truck stop electrification, on-board and off-board systems. On board TSE solutions allow trucker's the ability to recharge their batteries at truck stops via standard 120 Volt electrical outlets. Truckers can then utilize the truck's batteries to power appliances and provide heating and cooling to the truck cab. Typically, on-board TSE solutions require some vehicle modification. Off-board TSE solutions do not typically require any vehicle modifications, as they provide heating and air conditioning services via an overhead unit and hose that connects to the truck's window. In addition to heating and cooling, these connections can also offer standard electrical outlets, internet access, movies and satellite programming. [32] Normally, private companies provide and regulate either system and can charge an hourly rate for services, typically around $1.00-$2.00 an hour. [33] Both of these options can generate revenue for truck stop operators, and decrease operating expenses for truckers relative to the cost of diesel fuel. The cost of electricity to provide overnight power to trucks can save up to $3,240 of fuel that would normally be consumed by idling per parking space. Truck stop electrification can allow truck drivers to abide local idling regulations and reduce noise to neighboring establishments. [4]

The cost of implementing a single TSE site can vary greatly, depending on the type of technology that is employed. Installation costs for technology that provides external power to operate equipment on board a truck range from $4,500 to $8,500 per space, whereas the costs to provide a window based power unit (i.e. an off board apparatus) range from $10,000 to $20,000 per space. Costs for an individual truck operator to install an on-board system capable of utilizing shore power from a TSE space can cost up to $2,000. [33]

Idle management/control

Idle management technologies have been developed as an upfitting solution to answer idling concerns. Similar to a start-stop system, idle management technologies can control the vehicle while in Park are Neutral, which allows for extensive control when the vehicle is in its primary state of issue—at idle. Some idle management technologies are so comprehensive, they are able to manage the engine's on/off ignition while retaining control of auxiliary functions, such as vehicle climate, anti-theft, operator security, and more, even when the engine is powered off.

Idle reduction can also be achieved by more efficient control of stop lights [34] and reducing congestion on roadways. States and municipalities that have employed data analytics to reduce bottlenecks and improve traffic flow—which reduces idling—include Austin, Texas and the state of Florida. [35]

See also

Related Research Articles

<span class="mw-page-title-main">Auxiliary power unit</span> Alternative vehicle power source

An auxiliary power unit (APU) is a device on a vehicle that provides energy for functions other than propulsion. They are commonly found on large aircraft and naval ships as well as some large land vehicles. Aircraft APUs generally produce 115 V AC voltage at 400 Hz, to run the electrical systems of the aircraft; others can produce 28 V DC voltage. APUs can provide power through single or three-phase systems.

<span class="mw-page-title-main">Hybrid vehicle</span> Vehicle using two or more power sources

A hybrid vehicle is one that uses two or more distinct types of power, such as submarines that use diesel when surfaced and batteries when submerged. Other means to store energy include pressurized fluid in hydraulic hybrids.

<span class="mw-page-title-main">Exhaust gas recirculation</span> NOx reduction technique used in gasoline and diesel engines

In internal combustion engines, exhaust gas recirculation (EGR) is a nitrogen oxide (NOx) emissions reduction technique used in petrol/gasoline, diesel engines and some hydrogen engines. EGR works by recirculating a portion of an engine's exhaust gas back to the engine cylinders. The exhaust gas displaces atmospheric air and reduces O2 in the combustion chamber. Reducing the amount of oxygen reduces the amount of fuel that can burn in the cylinder thereby reducing peak in-cylinder temperatures. The actual amount of recirculated exhaust gas varies with the engine operating parameters.

<span class="mw-page-title-main">Electric vehicle</span> Vehicle propelled by one or more electric motors

An electric vehicle (EV) is a vehicle that uses one or more electric motors for propulsion. It can be powered by a collector system, with electricity from extravehicular sources, or it can be powered autonomously by a battery. EVs include, but are not limited to, road and rail vehicles, surface and underwater vessels, electric aircraft, and electric spacecraft. For road vehicles, together with other emerging automotive technologies such as autonomous driving, connected vehicles, and shared mobility, EVs form a future mobility vision called Connected, Autonomous, Shared, and Electric (CASE) Mobility.

<span class="mw-page-title-main">Catalytic converter</span> Exhaust emission control device

A catalytic converter is an exhaust emission control device that converts toxic gases and pollutants in exhaust gas from an internal combustion engine into less-toxic pollutants by catalyzing a redox reaction. Catalytic converters are usually used with internal combustion engines fueled by gasoline or diesel, including lean-burn engines, and sometimes on kerosene heaters and stoves.

<span class="mw-page-title-main">Truck stop</span> Refuelling facility for truck drivers

A truck stop, known as a service station in the United Kingdom, and a travel center by major chains in the United States, is a commercial facility which provides refueling, rest (parking), and often ready-made food and other services to motorists and truck drivers. Truck stops are usually located on or near a busy road.

Manifold vacuum, or engine vacuum in an internal combustion engine is the difference in air pressure between the engine's intake manifold and Earth's atmosphere.

<span class="mw-page-title-main">Electric truck</span> Battery propelled freight motor vehicle

An electric truck is an electric vehicle powered by batteries designed to transport cargo, carry specialized payloads, or perform other utilitarian work.

<span class="mw-page-title-main">Diesel exhaust fluid</span> Standardized aqueous urea solution for exhaust aftertreatment

Diesel exhaust fluid is a liquid used to reduce the amount of air pollution created by a diesel engine. Specifically, DEF is an aqueous urea solution made with 32.5% urea and 67.5% deionized water. DEF is consumed in a selective catalytic reduction (SCR) that lowers the concentration of nitrogen oxides in the diesel exhaust emissions from a diesel engine.

Shore power or shore supply is the provision of shoreside electrical power to a ship at berth while its main and auxiliary engines are shut down. While the term denotes shore as opposed to off-shore, it is sometimes applied to aircraft or land-based vehicles, which may plug into grid power when parked for idle reduction.

<span class="mw-page-title-main">Diesel particulate filter</span> Removes diesel particulate matter or soot from the exhaust gas of a diesel engine

A diesel particulate filter (DPF) is a device designed to remove diesel particulate matter or soot from the exhaust gas of a diesel engine.

<span class="mw-page-title-main">Fuel economy in automobiles</span> Distance traveled by a vehicle compared to volume of fuel consumed

The fuel economy of an automobile relates distance traveled by a vehicle and the amount of fuel consumed. Consumption can be expressed in terms of volume of fuel to travel a distance, or the distance traveled per unit volume of fuel consumed. Since fuel consumption of vehicles is a significant factor in air pollution, and since importation of motor fuel can be a large part of a nation's foreign trade, many countries impose requirements for fuel economy. Different methods are used to approximate the actual performance of the vehicle. The energy in fuel is required to overcome various losses encountered while propelling the vehicle, and in providing power to vehicle systems such as ignition or air conditioning. Various strategies can be employed to reduce losses at each of the conversions between the chemical energy in the fuel and the kinetic energy of the vehicle. Driver behavior can affect fuel economy; maneuvers such as sudden acceleration and heavy braking waste energy.

<span class="mw-page-title-main">Energy-efficient driving</span>

Energy-efficient driving techniques are used by drivers who wish to reduce their fuel consumption, and thus maximize fuel efficiency. The use of these techniques is called "hypermiling".

<span class="mw-page-title-main">Trucking industry in the United States</span> American industry

The trucking industry serves the American economy by transporting large quantities of raw materials, works in process, and finished goods over land—typically from manufacturing plants to retail distribution centers. Trucks are also used in the construction industry, two of which require dump trucks and portable concrete mixers to move the large amounts of rocks, dirt, concrete, and other building materials used in construction. Trucks in America are responsible for the majority of freight movement over land and are tools in the manufacturing, transportation, and warehousing industries.

<span class="mw-page-title-main">Electronic Diesel Control</span>

Electronic Diesel Control is a diesel engine fuel injection control system for the precise metering and delivery of fuel into the combustion chamber of modern diesel engines used in trucks and cars.

<span class="mw-page-title-main">Idle (engine)</span>

Idling refers to running a vehicle's engine when the vehicle is not in motion. This commonly occurs when drivers are stopped at a red light, waiting while parked outside a business or residence, or otherwise stationary with the engine running. When idling, the engine runs without any loads except the engine accessories.

IdleAir, a division of Convoy Solutions LLC, is a company that provides in-cab services to truckers via centralized systems at truck stops around the United States. IdleAir's service, the patented Advanced Travel Center electrification (ATE), was more complex and more expensive than traditional truck stop electrification (TSE) systems which are aimed at idle reduction reducing the amount of fuel consumed by trucks while they idle during rests.

<span class="mw-page-title-main">Mobile source air pollution</span>

Mobile source air pollution includes any air pollution emitted by motor vehicles, airplanes, locomotives, and other engines and equipment that can be moved from one location to another. Many of these pollutants contribute to environmental degradation and have negative effects on human health. To prevent unnecessary damage to human health and the environment, environmental regulatory agencies such as the U.S. Environmental Protection Agency have established policies to minimize air pollution from mobile sources. Similar agencies exist at the state level. Due to the large number of mobile sources of air pollution, and their ability to move from one location to another, mobile sources are regulated differently from stationary sources, such as power plants. Instead of monitoring individual emitters, such as an individual vehicle, mobile sources are often regulated more broadly through design and fuel standards. Examples of this include corporate average fuel economy standards and laws that ban leaded gasoline in the United States. The increase in the number of motor vehicles driven in the U.S. has made efforts to limit mobile source pollution challenging. As a result, there have been a number of different regulatory instruments implemented to reach the desired emissions goals.

<span class="mw-page-title-main">Exhaust heat recovery system</span>

An exhaust heat recovery system turns waste heat energy in exhaust gases into electric energy for batteries or mechanical energy reintroduced on the crankshaft. The technology is of increasing interest as car and heavy-duty vehicle manufacturers continue to increase efficiency, saving fuel and reducing emissions.

A fuel cell auxiliary power unit (FC-APU) is a fuel cell based auxiliary power unit on a vehicle that provides energy for functions other than propulsion. They are mainly used in trucking, aviation, marine and recreational vehicles.

References

  1. What SmartWay Can Do For You: Idling Reduction
  2. Idle Reduction Related Links
  3. "6.24.08 Automotive Engineering Online: Cool truck technology is heating up". Archived from the original on 4 December 2008. Retrieved 30 June 2008.
  4. 1 2 "Alternative Fuels Data Center: Idle Reduction Equipment for Heavy-Duty Trucks".
  5. "Climate Change: Atmospheric Carbon Dioxide". Climate.gov. US Dept. of Commerce. 23 June 2022. Retrieved 3 November 2022. According to observations by the NOAA Global Monitoring Lab, in 2021 carbon dioxide alone was responsible for about two-thirds of the total heating influence of all human-produced greenhouse gases.
  6. "Idling – Frequently Asked Questions". Natural Resources Canada. Government of Canada. Retrieved 3 November 2022. An average vehicle with a 3-litre engine idling for ten minutes burns 300 millilitres (over 1 cup) of fuel and this produces 690 grams of CO².
  7. "Idle Reduction". U.S. Department of Energy. Archived from the original on 1 July 2007.
  8. What is idle reduction?
  9. "Idling Reduction". US: Environmental Protection Agency. 5 February 2022. Archived from the original on 1 March 2004.
  10. Shorepower
  11. "National Idling Reduction Plan Gets Moving" (PDF). National Idling Reduction Network News. US. September 2004. Archived from the original (PDF) on 2 May 2009.
  12. "SmartWay Transport Partnership | SmartWay Transport | US EPA". Archived from the original on 10 February 2010.
  13. "Compilation of State, County, and Local Anti-Idling Regulations" (PDF). US: Environmental Protection Agency. 2006. EPA420-B-06-004. Archived from the original (PDF) on 17 April 2007.
  14. "Idle Reduction | What SmartWay Can Do For You | SmartWay Transport | US EPA". Archived from the original on 24 September 2008.
  15. 1 2 "New York City strengthens anti-idling laws, reflecting nationwide trend of state and local idling regulation : Global Climate Law Blog". Archived from the original on 22 March 2012. Retrieved 19 May 2014.
  16. Wilson, Michael; Blesener, Sarah (19 March 2022). "$87.50 for 3 Minutes: Inside the Hot Market for Videos of Idling Trucks". The New York Times. ISSN   0362-4331 . Retrieved 20 March 2022.
  17. Linda Taaffe (15 December 2017). "Anti-ideling proposal steers toward education". p. 5.
  18. "Negative Consequences of Anti-Idling Legislation - Ship Happens – the uShip Blog". Archived from the original on 12 August 2011.
  19. "The Road Traffic (Vehicle Emissions) (Fixed Penalty) (England) Regulations 2002".
  20. "List of Local Authorities with AQMAs- Defra, UK".
  21. "Idling".
  22. "The Road Traffic (Vehicle Emissions) (Fixed Penalty) (Wales) Regulations 2003". 2003.
  23. "Just 0.1% of idling drivers fined in central London, data reveals". 8 March 2022.
  24. "Bills Committee on Motor Vehicle Idling (Fixed Penalty) Bill" (PDF). Hong Kong: Legislative Council. 1 June 2010. LC Paper No. CB(1)2852/09-10.
  25. "Espar - Coolant Heaters". Archived from the original on 13 July 2007.
  26. "TSL 17 Coolant Heater" (PDF). US: Webasto. 2004. Archived from the original (PDF) on 13 March 2005.
  27. "Interstate Truck Driver's Guide to Hours of Service" (PDF). Federal Motor Carrier Safety Administration. Retrieved 17 November 2013.
  28. Zietsman, Josias; Mohamadreza Farzaneh; William H. Schneider IV; Jae Su Lee; Paul Bubbosh (2009). "Truck Stop Electrification as a Strategy To Reduce Greenhouse Gases, Fuel Consumption and Pollutant Emissions" (PDF). Transportation Research Board. Retrieved 17 November 2013.
  29. "Reference Sourcebook for Reducing Greenhouse Gas Emissions from Transportation Sources" (PDF). U.S. Department of Transportation Federal Highway Administration. Retrieved 17 November 2013.
  30. "Truck Stop Electrification for Heavy-Duty Trucks". United States Department of Energy.
  31. "Truck Stop Electrification Locator". U.S. Department of Energy. Retrieved 17 November 2013.
  32. "Truck Stop Electrification" (PDF). California Energy Commission. Retrieved 17 November 2013.
  33. 1 2 "Truck Stop Electrification and Anti-idling as a Diesel Emissions Reduction Strategy at U.S. - Mexico Ports of Entry" (PDF). U.S. Environmental Protection Agency. 29 January 2013. Retrieved 17 November 2013.
  34. Edelstein, Stephen (7 April 2022). "Poorly Times Traffic Lights = More CO2". GreenCarReports. Internet Brands. Retrieved 1 November 2022.
  35. Rosenbaum, Eric (9 June 202). "It's not Apple or Tesla, but Inrix has data from 500 million vehicles taking transportation into the future". CNBC.com. CNBC LLC. Retrieved 1 November 2022. About a year ago, Inrix launched a traffic signal timing product, which in pilot cities such as Austin, Texas, has demonstrated a 7% decrease in congestion