Indoor bioaerosol is bioaerosol in an indoor environment. Bioaerosols are natural or artificial particles of biological (microbial, plant, or animal) origin suspended in the air. These particles are also referred to as organic dust. Bioaerosols may consist of bacteria, fungi (and spores and cell fragments of fungi), viruses, microbial toxins, pollen, plant fibers, etc. [1] Size of bioaerosol particles varies from below 1 μm to 100 μm in aerodynamic diameter; [2] viable bioaerosol particles can be suspended in air as single cells or aggregates of microorganism as small as 1–10 μm in size. [3] Since bioaerosols are potentially related to various human health effects [4] [5] [6] [7] and the indoor environment provides a unique exposure situation, [7] concerns about indoor bioaerosols have increased over the last decade.
Indoor bioaerosols may originate from outdoor air and indoor reservoirs. [3] [4] Although outdoor bioaerosols cannot easily migrate into large buildings with complex ventilation systems, certain categories of outdoor bioaerosols (i.e., fungal spores) do serve as major sources for indoor bioaerosols in naturally ventilated buildings at specific periods of time (i.e., growing seasons for fungi). [3] Major indoor sources for bioaerosols at residential homes include human occupants, pets, house dust, organic waste, as well as the heating, ventilation and air-conditioning (HVAC) system. [3] [4] [6] [8] [9] Several studies have identified human activities as an important source for indoor bioaerosols. [3] [8] [10] [11] Human bodies can generate bioaerosols directly through activities like talking, sneezing, and coughing, [10] while other residential activities (i.e., washing, flushing toilet, sweeping floor) can generate bioaerosols indirectly. [8] [10] Since microorganisms can accumulate and grow on dust particles, house dust is a potential source of bioaerosols. [4] In a study by Wouters et al., [6] they investigated the effects of indoor storage of organic household waste on microbial contamination among 99 households in the Netherlands in the summer of 1997, and indicated that "increased microbial contaminant levels in homes are associated with indoor storage of separated organic waste", which might elevate "the risk of bioaerosol-related respiratory symptoms in susceptible people". However, the analysis by Wouters et al. [6] was based on the collected samples of settled house dust, which might not serve as a strong indicator for bioaerosols suspended in the air. Other materials in residential buildings, such as food stuffs, house plants, textiles, wood material and furniture stuffing can also become bioaerosol sources when water content is appropriate for microorganisms to grow. [4] [10] For non-residential buildings, some specific indoor environments, such as hospitals, wastewater treatment plants, composting facilities, certain biotechnical laboratories, have been revealed to have bioaerosol sources related to their particular environmental characteristics. [2] [3] [11] [12] [13]
According to previous studies, [4] [9] [14] [15] [16] major indoor environmental factors influencing bioaerosol concentration include relative humidity, characteristics of air ventilation systems, seasonal variation, temperature, and chemical composition of the air. Other factors, such as the type of home, building material, geographical factors, do not seem to have significant impacts on respirable fungi and bacteria (important constituents of bioaerosols). [3] Relative humidity is one of the most widely studied influencing factors for indoor bioaerosols. Concentrations of two categories of bioaerosols, endotoxin and airborne fungi, are both positively related to indoor relative humidity (higher concentration associated with higher relative humidity). [4] [9] [15] [16] Relative humidity also affects the infectivity of airborne viruses. [14] Regarding the characterisation of air ventilation system, increased use of central air conditioning is found to be associated with lower fungal bioaerosol concentration. [15]
Adverse health effects/diseases related to indoor bioaerosol exposure can be divided into two categories: those confirmed to be associated with bioaerosol and those suspected but not confirmed to be associated with bioaerosol. Bioaerosols have been revealed to cause certain human diseases, such as tuberculosis, Legionnaires' disease and different forms of bacterial pneumonia, coccidioidomycosis, influenza, measles, and gastrointestinal illness. [7] [17] Bioaerosols are also associated with some noninfectious airway diseases, such as allergies and asthma. [5] As a known component of indoor bioaerosol, β(1→3)-glucan (cell wall components of most fungi) is proposed to be the causative agent of mold-induced nonallergic inflammatory reactions. [6] It is reported that 25%-30% of allergenic asthma cases in industrialised countries are induced by fungi, [17] which has been the focus of concerns about human exposure to airborne microorganisms in recent years. [18]
Some other human diseases and symptoms have been proposed to be associated with indoor bioaerosol, but no deterministic conclusions could be drawn due to the insufficiency of evidence. One example is the well-known sick building syndrome (SBS). SBS refers to non-specific complaints, such as upper-respiratory irritative symptoms, headaches, fatigue, and rash, which cannot be related to an identifiable cause but are building related. [4] [19] Over the last two decades, there have been many studies indicating association of indoor bioaerosol with sick building syndrome. [20] [21] [22] [23] However, most of the related studies based their conclusions on statistical correlation between concentrations of certain types of bioaerosols and incidence of complaints, which has various drawbacks methodologically. For example, some studies have a small sample size, [21] which critically undermines the validity of speculations based on the statistical results. Also, many studies were not able to exclude the influences of other factors beside bioaerosol in their analysis, which makes the statistical correlation theoretically inappropriate to support association of SBS with bioaerosols. Additional studies revealed that bioaerosol is unlikely to be the cause of SBS. [7] [24] [25] Recent epidemiological and toxicological studies continued to suggest a possible link between bioaerosol exposure and sick building syndrome, but methodological limitations remained in these studies. [4] [26]
The ability of bioaerosols to cause human disease depend not only on their chemical composition and biological characteristics, but also on the quantity of bioaerosol inhaled and their size distribution, which determines the site of bioaerosol deposition to human respiratory systems. [3] Bioaerosols larger than 10 μm in aerodynamic diameter are generally blocked by the nasal region of the respiratory tract, those between 5-10 μm mainly deposit in the upper respiratory system and usually induce symptoms like allergic rhinitis, and particles with aerodynamic diameter less than 5 μm can reach the alveoli and hence lead to serious illnesses such as allergic alveolitis. [3]
Because of the confirmed and potential adverse health effects associated with indoor bioaerosol, some concentration limits for total number of bioaerosol particles are recommended by different agencies and organisations as follow: 1000 CFUs/m3 (National Institute for Occupational Safety and Health (NIOSH)), 1000 CFUs/m3 (American Conference of Governmental Industrial Hygienists (ACGIH)) with the culturable count for total bacteria not exceeding 500 CFUs/m3. [10] Note that for most types of indoor bioaerosols, the establishment of specific concentration limits or acceptance levels presents multiple challenges (e.g., differences on sampling and analysis method, irrelevance of sampling units to human exposure measurement; multiplicity and variability of composition, etc.). [18]
To enable subsequent identification and quantification, bioaerosols need to be captured from the air first. Different air sampling techniques have been used to realise the goal of capturing indoor bioaerosols.. Important characteristics of bioaerosol sampling include: representativeness of sampling, sampler performance, and compatibility with subsequent analysis. [27] Long-term sampler theoretically has a better representativeness of sampling than short-term sampler, but may not have a good temporary resolution. Performance of samplers (i.e., limit of detection and upper limit of range) has a significant impact on the reliability of results. [27] Different characterisations of samplers can also limit the possibilities for further analysis (identification and quantification). Major bioaerosol sampler types and their possible subsequent analysis are summarised in Table 1. A frequently used sampler in previous studies is the Andersen impactor. [3] [11] [28]
Sampler | Example of Device | Possible Subsequent Analysis |
---|---|---|
Impactors and Sieve Samplers | Andersen impactor; SAS; Burkard sampler | Cultivation; Microscopic analysis |
Impingers | AGI-30; Shipe sampler; Midget, multi-stage and micro-impingers | Cultivation; Microscopic analysis; Biochemical analysis; Immunoassays |
Centrifugal Samplers | RCS; Aerojet cyclone | Cultivation; Microscopic analysis; Biochemical analysis; Immunoassays |
Filter Cassette | Glass fiber; Teflon filters; Polycarbonate | Cultivation; Microscopic analysis; Biochemical analysis; Immunoassays |
Certain limitations exist for commonly used bioaerosol samplers. For most of the samplers, nonbiological environmental particles such as dust must be separated from bioaerosols prior to detection. [29] The diluted nature of bioaerosol in the air also poses challenges to samplers. While total microorganism concentrations are on the order of 106/cm3 or greater, bioaerosol concentrations are commonly less than 1/cm3, and often less than 1/m3 in the case of infectious aerosols. [5] Moreover, many commercially available bioaerosol samplers haven not been investigated on their collection efficiencies for particles with different aerodynamic diameters, which makes it impossible to get the size-resolved bioaerosol information. [5]
In previous research on indoor bioaerosol in residential environments, microorganisms have been quantified by conventional culture-based techniques, in which colony forming units (CFU) on selective media are counted. [30] Cultivating methods have several disadvantages. Culture-based methods are known to underestimate environmental microbial diversity, based on the fact that only a small percentage of microbes can be cultivated in the laboratory. This underestimation is likely to be signified for the quantification of bioaerosol, since colony counts of airborne microbes are typically quite different from direct counts. [31] Culture-based methods also need relatively long incubation times (over 24 hours) and are labor-intensive. [29] Consequently, culture-based methods are no longer suitable for effective and rapid identification and quantification of bioaerosol, [29] and non-culture based methods, such as immunoassays, molecular biological tests, and optical, and electrical methods, have been developing over the past few decades. [29]
Major culture-independent identification/quantification methods adopted in previous bioaerosol studies include polymerase chain reaction (PCR), [17] quantitative polymerase chain reaction (qPCR), [32] microarray (PhyloChip), [33] fluorescent in situ hybridisation (FISH), [34] flow cytometry [34] and solid-phase cytometry, [18] immunoassay (i.e., enzyme-linked immunosorbent assay (ELISA)). [28] The well-known PCR is a powerful tool in identifying and even quantifying the biological origin of bioaerosols. PCR alone cannot accomplish all the tasks related to bioaerosol detection; instead it usually serves as the preparation tool for subsequent processes like DNA sequencing, microarray, and community fingerprinting techniques. A typical procedure for PCR-based bioaerosol analysis is shown in Figure 1.
Molecular biological methods for bioaerosol are significantly faster and more sensitive than conventional culture-based methods, and they are also able to reveal a larger diversity of microbes. Targeting the variation in the 16S rRNA gene, a microarray (PhyloChip) was used to conduct comprehensive identification of both bacterial and archaeal organisms in bioaerosols. [33] New U.S. EPA methods have been developed to utilise qPCR to characterise indoor environment for fungal spores. [5] In a study by Lange et al., [34] FISH method successfully identified eubacteria in samples of complex native bioaerosols in swine barns. Nonetheless, molecular biological tools have limitations. Since PCR methods target DNA, viability of cells could not be confirmed in some cases. [18] When qPCR technique is used for bioaerosol detection, standard curves need to be developed to calibrate final results. One study indicated that "curves used for quantification by qPCR needs to be prepared using the same environmental matrix and procedures as handling of the environmental sample in question" and that "reliance on the standard curves generated with cultured bacterial suspension (a traditional approach) may lead to substantial underestimation of microorganism quantities in environmental samples". [32] Microarray techniques also face the challenge of natural sequence diversity and potential cross-hybridisation in complex environmental bioaerosols). [33]
Concentration levels of indoor bioaerosols in different regions of the world recorded in published literatures are summarised as Table 2.
Geographical Region | Study Period | Sampling/Survey Size | Average Concentration Level (CFU/m3) | Major Microbes Present | References |
---|---|---|---|---|---|
Midwestern area, USA | April–September, 1991 | 27 (noncomplaint homes) | Viable bacteria: 970; Culturable fungi: 1200. | N/A | [15] |
Taipei area, Taiwan | July 1996 | 40 daycare centers (DC), 69 office buildings (OB), 22 homes (H) | Bacteria: 7651(DC), 1502(OB), 2907(H); Fungi: 854(DC), 195(OB), 695(H). | N/A | [35] |
25 states of USA | 1994-1998 | 100 large office buildings | Total bacteria (average): 101.9; Total bacteria (90th percentile): 175. | Mesophilic bacteria | [36] |
Upper Silesia, Poland | 1996-1998 | 70 dwellings | Bacterial aerosol in homes: 1000; Bacterial aerosol in offices: 100. | Micrococcus spp; Staphylococcus epidermidis | [3] |
The city of Boston, USA | May 1997-May 1998 | 21 offices | Fungi: 42.05 (Standard deviation=69.60) | N/A | [4] |
Hong Kong, China | About 1 week | 2 offices | Highest bacterial concentration: 2912; Highest fungal concentration: 3852. | Cladosporium; Penicillium | [16] |
The city of Daegu, Republic of Korea | June 2003-August 2004 | 41 bars, 41 internet cafes, 44 classrooms, 20 homes | Total bacteria and total fungi: 10–1000. | N/A | [37] |
Based on the sources and the influencing factors for indoor bioaerosols, corresponding remedial actions can be taken to control related contamination. Potentially effective strategies include: 1) limiting entrance of outdoor aerosols; 2) keeping the relative humidity level below high levels (<60%); [7] 3) installing appropriate filtration devices to air ventilation system to inlet filtered outdoor air into indoor environment; 4) reducing/removing contaminant sources (i.e., indoor organic waste). As in the U.S., due to the increase in tuberculosis in the mid-1980s, indoor air treatment has developed substantially during the past two decades. [5] Current or developing indoor air purification technologies include filtration, aerosol ultraviolet irradiation, electrostatic precipitation, unipolar ion emission, and photocatalytic oxidation. [5]
Mold health issues refer to the harmful health effects of molds and their mycotoxins. However, recent research has shown these adverse health effects are caused not exclusively by molds, but also other microbial agents and biotoxins associated with dampness, mold, and water-damaged buildings, such as gram-negative bacteria that produce endotoxins, as well as actinomycetes and their associated exotoxins. Approximately 47% of houses in the United States have substantial levels of mold, with over 85% of commercial and office buildings found to have water damage predictive of mold. As many as 21% of asthma cases may result from exposure to mold. Substantial and statistically significant increases in the risks of both respiratory infections and bronchitis have been associated with dampness in homes and the resulting mold.
A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.
Aerobiology is a branch of biology that studies the passive transport of organic particles, such as bacteria, fungal spores, very small insects, pollen grains and viruses. Aerobiologists have traditionally been involved in the measurement and reporting of airborne pollen and fungal spores as a service to those with allergies. However, aerobiology is a varied field, relating to environmental science, plant science, meteorology, phenology, and climate change.
Indoor air quality (IAQ) is the air quality within buildings and structures. Poor indoor air quality due to indoor air pollution is known to affect the health, comfort, and well-being of building occupants. It has also been linked to sick building syndrome, respiratory issues, reduced productivity, and impaired learning in schools. Common pollutants of indoor air include: secondhand tobacco smoke, air pollutants from indoor combustion, radon, molds and other allergens, carbon monoxide, volatile organic compounds, legionella and other bacteria, asbestos fibers, carbon dioxide, ozone and particulates. Source control, filtration, and the use of ventilation to dilute contaminants are the primary methods for improving indoor air quality.
Sick building syndrome (SBS) is a condition in which people develop symptoms of illness or become infected with chronic disease from the building in which they work or reside. In the scientific literature, SBS is also known as Building Related Illness (BRI) or Building Related Symptoms (BRS) or Idiopathic Environmental Intolerance (IEI).
Aeroplankton are tiny lifeforms that float and drift in the air, carried by wind. Most of the living things that make up aeroplankton are very small to microscopic in size, and many can be difficult to identify because of their tiny size. Scientists collect them for study in traps and sweep nets from aircraft, kites or balloons. The study of the dispersion of these particles is called aerobiology.
Stachybotrys chartarum, also known as black mold is a species of microfungus that produces its conidia in slime heads.
Microbial corrosion, also called microbiologically influenced corrosion (MIC), microbially induced corrosion (MIC), or biocorrosion, is when microbes affect the electrochemical environment of the surface they are on. This usually involves building a biofilm, which can lead to either an increase in corrosion of the surface or, in a process called microbial corrosion inhibition, protect the surface from corrosion.
Bioaerosols are a subcategory of particles released from terrestrial and marine ecosystems into the atmosphere. They consist of both living and non-living components, such as fungi, pollen, bacteria and viruses. Common sources of bioaerosols include soil, water, and sewage.
The use of podiatry drills, in the absence of engineering controls and personal protective equipment, is an occupational hazard to the healthcare provider. Nail dust collected during foot care procedures performed in office settings has been found to contain keratin, keratin hydrolysates, microbial debris, and viable fungal elements, including dermatophytes and saprotrophs. Exposure to nail dust and the associated risk will vary with the policies and practices in place, the type of podiatry drill used, therapy technique, frequency of procedures, personal protective equipment utilized and the use of ventilation systems.
The sea surface microlayer (SML) is the boundary interface between the atmosphere and ocean, covering about 70% of Earth's surface. With an operationally defined thickness between 1 and 1,000 μm (1.0 mm), the SML has physicochemical and biological properties that are measurably distinct from underlying waters. Recent studies now indicate that the SML covers the ocean to a significant extent, and evidence shows that it is an aggregate-enriched biofilm environment with distinct microbial communities. Because of its unique position at the air-sea interface, the SML is central to a range of global marine biogeochemical and climate-related processes.
Indoor mold or indoor mould, also sometimes referred to as mildew, is a fungal growth that develops on wet materials in interior spaces. Mold is a natural part of the environment and plays an important part in nature by breaking down dead organic matter such as fallen leaves and dead trees; indoors, mold growth should be avoided. Mold reproduces by means of tiny spores. The spores are like seeds, but invisible to the naked eye, that float through the air and deposit on surfaces. When the temperature, moisture, and available nutrient conditions are correct, the spores can form into new mold colonies where they are deposited. There are many types of mold, but all require moisture and a food source for growth.
Indicator organisms are used as a proxy to monitor conditions in a particular environment, ecosystem, area, habitat, or consumer product. Certain bacteria, fungi and helminth eggs are being used for various purposes.
Aerobiological engineering is the science of designing buildings and systems to control airborne pathogens and allergens in indoor environments. The most-common environments include commercial buildings, residences and hospitals. This field of study is important because controlled indoor climates generally tend to favor the survival and transmission of contagious human pathogens as well as certain kinds of fungi and bacteria.
Airborne transmission or aerosol transmission is transmission of an infectious disease through small particles suspended in the air. Infectious diseases capable of airborne transmission include many of considerable importance both in human and veterinary medicine. The relevant infectious agent may be viruses, bacteria, or fungi, and they may be spread through breathing, talking, coughing, sneezing, raising of dust, spraying of liquids, flushing toilets, or any activities which generate aerosol particles or droplets.
An air sanitizer is a sanitizer that acts on airborne microorganisms, including bacteria, fungi, and viruses, in households, institutions, and/or commercial environments.
The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) was a five-year scientific research program that investigated aspects of phytoplankton dynamics in ocean ecosystems, and how such dynamics influence atmospheric aerosols, clouds, and climate. The study focused on the sub-arctic region of the North Atlantic Ocean, which is the site of one of Earth's largest recurring phytoplankton blooms. The long history of research in this location, as well as relative ease of accessibility, made the North Atlantic an ideal location to test prevailing scientific hypotheses in an effort to better understand the role of phytoplankton aerosol emissions on Earth's energy budget.
The transmission of COVID-19 is the passing of coronavirus disease 2019 from person to person. COVID-19 is mainly transmitted when people breathe in air contaminated by droplets/aerosols and small airborne particles containing the virus. Infected people exhale those particles as they breathe, talk, cough, sneeze, or sing. Transmission is more likely the closer people are. However, infection can occur over longer distances, particularly indoors.
Dusan Licina is an engineer and researcher specializing in indoor air quality, building ventilation, and human exposure. He is a professor at EPFL and head of the Human-Oriented Built Environment Laboratory.
Workplace exposure monitoring is the monitoring of substances in a workplace that are chemical or biological hazards. It is performed in the context of workplace exposure assessment and risk assessment. Exposure monitoring analyzes hazardous substances in the air or on surfaces of a workplace, and is complementary to biomonitoring, which instead analyzes toxicants or their effects within workers.