Interspecies communication is communication between different species of animals, plants, or microorganisms. Although researchers have explored the topic for many years, only recently has interspecies communication been recognized as an established field of inquiry. [1]
Cooperative interspecies communication implies sharing and understanding information between two or more species that work towards the benefit of both species (mutualism).[ citation needed ]
Since the 1970s, primatologist Sue Savage-Rumbaugh has been working with primates at Georgia State University's Language Research Center (LRC), and more recently, the Iowa Primate Learning Sanctuary. In 1985, using lexigram symbols, a keyboard and monitor, and other computer technology, Savage-Rumbaugh began her groundbreaking work with Kanzi, a male bonobo (P. paniscus). Her research has made significant contributions to a growing body of work in sociobiology studying language learning in non-human primates and exploring the role of language and communication as an evolutionary mechanism.[ citation needed ]
Koko, a lowland gorilla, began learning a modified American Sign Language as an infant, when Francine "Penny" Patterson, PhD, started working with her in 1975. Penny and Koko worked together at the Gorilla Foundation in one of the longest interspecies communication studies ever conducted until Koko's death in 2018. Koko had a vocabulary of over 1000 signs, and understood a greater amount of spoken English. [2]
In April 1998, Koko gave an AOL live chat. Sign language was used to relay to Koko questions from the online audience of 7,811 AOL members.[ citation needed ] The following is an excerpt from the live chat. [2]
Research observing cooperative communication has largely focused on primates, and predatory animals. Red-fronted lemurs and sifakas recognize one another's alarm calls. [3] The same has been found in West African Diana monkey and Campbell's monkeys. [4] When one species elicits an alarm signal specific to a certain predator, the other species react in the same pattern as the species that called. For example, leopards hunt both species by capitalizing the elements of stealth and surprise. If the monkeys detect the leopard before it attacks (usually resulting in mobbing), the leopard will typically not attack. Therefore, when a leopard alarm call is given, both species respond by positioning near the leopard signaling that it has been found out. It also seems that the monkeys are able to distinguish a leopard alarm call from, for example, a raptor alarm call. When a raptor alarm call is given, the monkeys respond by moving towards the forest floor and away from aerial attack. It is not simply that the monkeys act upon hearing the alarm calls but rather they are able to actually extract particular information from a call. Responses to heterospecific alarm calls are not confined to simian species but have also been found in ground squirrels, specifically the yellow-bellied marmot and the golden-mantled ground squirrel. [5] Researchers have determined that bird species are able to understand, or at least respond, to alarms calls by species of mammals and vice versa; red squirrels' acoustic response to raptors is near-identical to that of birds, making the latter also aware to a potential predatory threat, while eastern chipmunks are keen to mobbing calls by eastern tufted titmice. [6] Whether heterospecific understanding is a learned behavior or not is unclear. In 2000 it was found that age and interspecies experience were important factors in the ability for bonnet macaques to recognize heterospecific calls. [7] Macaques who were exposed longer to other species' alarm calls were more likely to correctly respond to heterospecific alarm calls. Key to this early learning was the reinforcement of a predatory threat, when an alarm call was given a corresponding threat had to be presented in order to make the association. Interspecies communication may not be an innate ability but rather a sort of imprinting coupled with an intense emotion (fear) early in life.
It is unusual for interspecies communication to be observed in an older animal taking care of a younger animal of a different species. For example, Owen and Mzee, the odd couple of an orphaned baby hippopotamus and a 130-year-old Aldabran tortoise, display this relationship rarely seen in the animal world. Dr. Kahumbu of the sanctuary that holds the two believes that the two vocalize to one another in neither a stereotypical tortoise nor a hippopotamus fashion. [8] Owen does not respond to hippopotamus calls. It is likely that when Owen was first introduced to Mzee he was still young enough to be imprinted.[ citation needed ]
Unlike cooperative communication, parasitic communication involves an unequal sharing of information (parasitism). In terms of alarm calls, this means that the warnings are not bi-directional. It may be that the other species has simply not been able to decipher the calls of the first species. Much of the research done on this type of communication has been in bird species, including the nuthatch and the great tit. Nuthatches are able to discriminate between subtle differences in chickadee alarm calls, which broadcast the location and size of a predator. [9] Since chickadees and nuthatches typically occupy the same habitat, mobbing predators together acts as a deterrent that benefits both species. Nuthatches screen chickadee alarm calls in order to determine whether it is cost-efficient, in terms of energy consumption, to mob a particular predator, because not all predators pose the same risk to nuthatches as to chickadees. Screening may be most important in the winter when energy demands are the highest.
Work by Gorissen, Gorissen, and Eens (2006) has focused on blue tit song matching (or, "song imitation") by great tits. [10] Blue and great tits compete for resources such as food and nesting cavities and their coexistence has important fitness consequences for both species. These fitness costs might promote interspecific aggression because resources need to be defended against heterospecifics as well. So, the use of efficient vocal strategies such as matching might prove to be effective in interspecific communication. Hence, heterospecific matching could be a way of phrasing a threat in the language of the heterospecfic intruder. It could equally be well argued that these imitations of blue tit sounds have no function at all and are merely the result of learning mistakes in the sensitive period of great tits because blue and great tits form mixed foraging flocks together. While the authors agree with the first hypothesis, it is plausible that the latter also being true given the data on age and experience in primates.
Eavesdropping has been found in tungara frogs and their sympatric heterospecifics. [11] The scientists posit that mixed-species choruses may reduce their risk of predation without increasing mate competition.
Much of the communication between predators and prey can be defined as signaling. In some animals, the best way to avoid being preyed upon is an advertisement of danger or unpalatability, or aposematism. Given the effectiveness of this, it is no surprise that many animals employ styles of mimicry to ward off predators. Some predators also use aggressive mimicry as a hunting technique. For example, Photuris fireflies mimic female Photinus fireflies by scent and glow patterns in order to lure interested male Photinus fireflies, which they then kill and eat. Lophiiformes, or anglerfish, are also famous for their use of escas as bait for small unsuspecting fish. [13]
Two examples of predator–prey signaling were found in caterpillars and ground squirrels. When physically disturbed, Lepidoptera larvae produce a clicking noise with their mandibles followed by an unpalatable oral secretion. [14] Scientists believe this to be “acoustic aposematism” which has only been previously found in a controlled study with bats and tiger moths. [15] While the defense mechanisms of ground squirrels to predatory rattlesnakes have been well studied (i.e. tail flagging), only recently have scientists discovered that these squirrels also employ a type of infrared heat signaling. [16] By using robotic models of squirrels, the researchers found that when infrared radiation was added to tail flagging, rattlesnakes shifted from predatory to defensive behavior and were less likely to attack than when no radiation component was added.
An allomone (from Ancient Greek ἄλλοςallos "other" and pheromone) is a type of semiochemical produced and released by an individual of one species that affects the behaviour of a member of another species to the benefit of the originator but not the receiver. [17] Production of allomones is a common form of defense against predators, particularly by plant species against insect herbivores. In addition to defense, allomones are also used by organisms to obtain their prey or to hinder any surrounding competitors. [18]
Many insects have developed ways to defend against these plant defenses (in an evolutionary arms race). One method of adapting to allomones is to develop a positive reaction to them; the allomone then becomes a kairomone. Others alter the allomones to form pheromones or other hormones, and yet others adopt them into their own defensive strategies, for example by regurgitating them when attacked by an insectivorous insect.
A third class of allelochemical (chemical used in interspecific communication), synomones, benefit both the sender and receiver. [17]
"Allomone was proposed by Brown and Eisner (Brown, 1968) to denote those substances which convey an advantage upon the emitter. Because Brown and Eisner did not specify whether or not the receiver would benefit, the original definition of allomone includes both substances that benefit the receiver and the emitter, and substances that only benefit the emitter. An example of the first relationship would be a mutualistic relationship, and the latter would be a repellent secretion." [19]
A synomone is an interspecific semiochemical that is beneficial to both interacting organisms, the emitter and receiver, e.g. floral synomone of certain Bulbophyllum species (Orchidaceae) attracts fruit fly males (Tephritidae: Diptera) as pollinators, so can be classed as an attractant. In this true mutualistic inter-relationship, both organisms gain benefits in their respective sexual reproductive systems – i.e. orchid flowers are pollinated and the Dacini fruit fly males are rewarded with a sex pheromone precursor or booster. The floral synomone, also acts as a reward to pollinators, is either in the form of a phenylpropanoid (e.g. methyl eugenol [24] [25] [26] ) or a phenylbutanoid (e.g. raspberry ketone [27] and zingerone [28] [29] ).
Another example of a synomone is trans-2-hexenal, emitted by trees in the Mimosa / Acacia clade of the Fabaceae. These trees form distinctive hollow structures in which ants nest. When a leaf is disrupted by an herbivore, the damaged cells emit trans-2-hexenal (among other volatiles), which is detected by the ants. The ants swarm to the herbivore, biting and stinging to defend their host plant. The tree repays them in turn by providing sugary nectar and fat- and protein-rich Beltian bodies to feed the ant colony.Social scientists and others have historically criticized research in interspecies communication, characterizing it as anthropomorphizing. This perspective has become less common in recent years. A 2013 TED Talk featured a proposal to construct an Interspecies Internet by presenters musician Peter Gabriel, Internet protocol co-inventor Vint Cerf, cognitive psychologist Diana Reiss, and director of MIT's Center for Bits and Atoms Neil Gershenfeld. [30] [31] A follow-up workshop to review progress and plan future activities occurred in 2019 and was co-hosted by MIT's Center for Bits and Atoms, Google, and the Jeremy Coller Foundation. [32] The ongoing efforts coalesced into a think-tank to accelerate understanding of interspecies communication. Workshops and public conferences were held in 2020 and 2021. [33] [34] [35]
Mutualism describes the ecological interaction between two or more species where each species has a net benefit. Mutualism is a common type of ecological interaction. Prominent examples are:
A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower. This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.
Bulbophyllum is a genus of mostly epiphytic and lithophytic orchids in the family Orchidaceae. It is the largest genus in the orchid family and one of the largest genera of flowering plants with more than 2,000 species, exceeded in number only by Astragalus. These orchids are found in diverse habitats throughout most of the warmer parts of the world including Africa, southern Asia, Latin America, the West Indies, and various islands in the Indian and Pacific Oceans. Orchids in this genus have thread-like or fibrous roots that creep over the surface of trees or rocks or hang from branches. The stem is divided into a rhizome and a pseudobulb, a feature that distinguished this genus from Dendrobium. There is usually only a single leaf at the top of the pseudobulb and from one to many flowers are arranged along an unbranched flowering stem that arises from the base of the pseudobulb. Several attempts have been made to separate Bulbophyllum into smaller genera, but most have not been accepted by the World Checklist of Selected Plant Families.
The tits, chickadees, and titmice constitute the Paridae, a large family of small passerine birds which occur mainly in the Northern Hemisphere and Africa. Most were formerly classified in the genus Parus.
Animal communication is the transfer of information from one or a group of animals to one or more other animals that affects the current or future behavior of the receivers. Information may be sent intentionally, as in a courtship display, or unintentionally, as in the transfer of scent from the predator to prey with kairomones. Information may be transferred to an "audience" of several receivers. Animal communication is a rapidly growing area of study in disciplines including animal behavior, sociology, neurology, and animal cognition. Many aspects of animal behavior, such as symbolic name use, emotional expression, learning, and sexual behavior, are being understood in new ways.
Chemical ecology is the study of chemically mediated interactions between living organisms, and the effects of those interactions on the demography, behavior and ultimately evolution of the organisms involved. It is thus a vast and highly interdisciplinary field. Chemical ecologists seek to identify the specific molecules that function as signals mediating community or ecosystem processes and to understand the evolution of these signals. The substances that serve in such roles are typically small, readily-diffusible organic molecules, but can also include larger molecules and small peptides.
In animal communication, an alarm signal is an antipredator adaptation in the form of signals emitted by social animals in response to danger. Many primates and birds have elaborate alarm calls for warning conspecifics of approaching predators. For example, the alarm call of the blackbird is a familiar sound in many gardens. Other animals, like fish and insects, may use non-auditory signals, such as chemical messages. Visual signs such as the white tail flashes of many deer have been suggested as alarm signals; they are less likely to be received by conspecifics, so have tended to be treated as a signal to the predator instead.
Zoophily, or zoogamy, is a form of pollination whereby pollen is transferred by animals, usually by invertebrates but in some cases vertebrates, particularly birds and bats, but also by other animals. Zoophilous species frequently have evolved mechanisms to make themselves more appealing to the particular type of pollinator, e.g. brightly colored or scented flowers, nectar, and appealing shapes and patterns. These plant-animal relationships are often mutually beneficial because of the food source provided in exchange for pollination.
Zingerone, also called vanillylacetone, is a major flavor component of ginger, providing the sweet flavor of cooked ginger. Zingerone is a crystalline solid that is sparingly soluble in water and soluble in ether.
An allomone is a type of semiochemical produced and released by an individual of one species that affects the behaviour of a member of another species to the benefit of the originator but not the receiver. Production of allomones is a common form of defense against predators, particularly by plant species against insect herbivores. In addition to defense, allomones are also used by organisms to obtain their prey or to hinder any surrounding competitors.
A semiochemical, from the Greek σημεῖον (semeion), meaning "signal", is a chemical substance or mixture released by an organism that affects the behaviors of other individuals. Semiochemical communication can be divided into two broad classes: communication between individuals of the same species (intraspecific) or communication between different species (interspecific).
A kairomone is a semiochemical, emitted by an organism, which mediates interspecific interactions in a way that benefits an individual of another species which receives it and harms the emitter. This "eavesdropping" is often disadvantageous to the producer. The kairomone improves the fitness of the recipient and in this respect differs from an allomone and a synomone. The term is mostly used in the field of entomology. Two main ecological cues are provided by kairomones; they generally either indicate a food source for the receiver, or the presence of a predator, the latter of which is less common or at least less studied.
Bactrocera dorsalis, previously known as Dacus dorsalis and commonly referred to as the oriental fruit fly, is a species of tephritid fruit fly that is endemic to Southeast Asia. It is one of the major pest species in the genus Bactrocera with a broad host range of cultivated and wild fruits. Male B. dorsalis respond strongly to methyl eugenol, which is used to monitor and estimate populations, as well as to annihilate males as a form of pest control. They are also important pollinators and visitors of wild orchids, Bulbophyllum cheiri and Bulbophyllum vinaceum in Southeast Asia, which lure the flies using methyl eugenol.
Raspberry ketone is a naturally occurring phenolic compound that is the primary aroma compound of red raspberries.
Insect ecology is the interaction of insects, individually or as a community, with the surrounding environment or ecosystem. This interaction is mostly mediated by the secretion and detection of chemicals (semiochemicals) in the environment by insects. Semiochemicals are secreted by the organisms in the environment and they are detected by other organism such as insects. Semiochemical used by organisms, including (insects) to interact with other organism either of the same species or different species can generally grouped into four. These are pheromones, synomones, allomones and kairomones. Pheromones are semiochemicals that facilitates interaction between organisms of same species. Synomones benefit both the producer and receiver, allomene is advantageous to only the producer whiles kairomones is beneficial to the receiver.
Bactrocera cucurbitae, the melon fly, is a fruit fly of the family Tephritidae. It is a serious agricultural pest, particularly in Hawaii.
Chemical mimicry is a type of biological mimicry involving the use of chemicals to dupe an operator.
An attractant is any chemical that attracts an organism, e.g. i) synthetic lures; ii) aggregation and sex pheromones ; and iii) synomone
Chemical communication in insects is social signalling between insects of the same or different species, using chemicals. These chemicals may be volatile, to be detected at a distance by other insects' sense of smell, or non-volatile, to be detected on an insect's cuticle by other insects' sense of taste. Many of these chemicals are pheromones, acting like hormones outside the body.
The pollination of orchids is a complex chapter in the biology of this family of plants that are distinguished by the complexity of their flowers and by intricate ecological interactions with their pollinator agents. It has captured the attention of numerous scientists over time, including Charles Darwin, father of the theory of evolution by natural selection. Darwin published in 1862 the first observations of the fundamental role of insects in orchid pollination, in his book The Fertilization of Orchids. Darwin stated that the varied stratagems orchids use to attract their pollinators transcend the imagination of any human being.
Others rely on the technique adopted by a wolf in sheep's clothing—they mimic a harmless species. ... Other predators even mimic their prey's prey: angler fish (Lophiiformes) and alligator snapping turtles Macroclemys temmincki can wriggle fleshy outgrowths of their fins or tongues and attract small predatory fish close to their mouths.
{{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: CS1 maint: multiple names: authors list (link){{citation}}
: CS1 maint: multiple names: authors list (link)