Names | |
---|---|
Preferred IUPAC name (2E)-hex-2-enal | |
Other names (trans)-2-Hexenal (2(E))-hexenal 6728-26-3 (E)-Hex-2-enal 3-propylacrolein β-propylacrolein | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ECHA InfoCard | 100.027.072 |
KEGG | |
PubChem CID | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C6H10O | |
Molar mass | 98.14 g/mol |
Density | 0.841-0.848 g/cm3 |
Boiling point | 47.00°C @ 17.00 mmHg |
Vapor pressure | 6.6 mmHg |
Related compounds | |
Related alkenals | (cis)-3-hexenal |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
trans-2-Hexenal is an organic unsaturated aldehyde with a six-carbon chain. This clear, pale yellow liquid has a green, leafy, herbal fruit smell. It occurs naturally in a wide variety of plants, fruits, vegetables, and spices, and appears to be an important mediating and signalling chemical in plant-fungus and plant-insect interactions, such as the symbiosis between acacia ants and Acacia s. [1] [2]
This aldehyde is a commonly produced volatile organic compound (VOC) among the flowering plants. It is among the VOCs known as green leaf volatiles, as they are released following damage to the leaf, whether by crushing, herbivory, or bacterial or fungal infection. It is also found in other parts of the plant. For example, it was found to constitute 34% of the total VOCs from fresh strawberry fruits and 28% of VOCs from fresh tomato fruits. [3]
trans-2-hexenal appears to be an airborne signalling chemical that can upregulate plant defenses, from leaf to leaf on the same plant as well as between neighboring plants. [4] It has been shown to inhibit the growth of fungal pathogens. [5]
It is also implicated in the mutualistic relationship between Acacia and related trees and their ant partners. The bullhorn acacia tree, Vachellia cornigera, grows inflated hollow spines at the base of its leaves that serve as nesting places for its symbiotic partner, the acacia ant, Pseudomyrmex ferruginea. The tree produces sugary nectar and fat- and protein-rich nutrient packets at the tips of its leaflets to serve as food for the ants. In return, the ants react aggressively towards any pest or herbivore which damages the Acacia leaves. It is the release of trans-2-hexenal from the damaged leaf that the ants sense and react to. [6] [1] [7]
This aldehyde is approved for use as a food additive and is used, highly diluted, in perfumery. [8] It is said to lend a green apple, leafy, herbal, spicy banana note to a fragrance. [9]
It may also find use as an antifungal agent, including as a post-harvest fruit preservative. [10] [11]
Volatile organic compounds (VOCs) are organic compounds that have a high vapor pressure at room temperature. They are common and exist in a variety of settings and products, not limited to house mold, upholstered furniture, arts and crafts supplies, dry cleaned clothing, and cleaning supplies. VOCs are responsible for the odor of scents and perfumes as well as pollutants. They play an important role in communication between animals and plants, such as attractants for pollinators, protection from predation, and even inter-plant interactions. Some VOCs are dangerous to human health or cause harm to the environment, often despite the odor being perceived as pleasant, such as "new car smell".
cis-3-Hexenal, also known as (Z)-3-hexenal and leaf aldehyde, is an organic compound with the formula CH3CH2CH=CHCH2CHO. It is classified as an unsaturated aldehyde. It is a colorless liquid and an aroma compound with an intense odor of freshly cut grass and leaves.
Vachellia cornigera, commonly known as bullhorn acacia, is a swollen-thorn tree and myrmecophyte native to Mexico and Central America. The common name of "bullhorn" refers to the enlarged, hollowed-out, swollen thorns that occur in pairs at the base of leaves, and resemble the horns of a steer. In Yucatán it is called "subín", in Panama the locals call them "cachito". The trees are commonly found in wet lowlands
A semiochemical, from the Greek σημεῖον (semeion), meaning "signal", is a chemical substance or mixture released by an organism that affects the behaviors of other individuals. Semiochemical communication can be divided into two broad classes: communication between individuals of the same species (intraspecific) or communication between different species (interspecific).
Plant defense against herbivory or host-plant resistance is a range of adaptations evolved by plants which improve their survival and reproduction by reducing the impact of herbivores. Many plants produce secondary metabolites, known as allelochemicals, that influence the behavior, growth, or survival of herbivores. These chemical defenses can act as repellents or toxins to herbivores or reduce plant digestibility. Another defensive strategy of plants is changing their attractiveness. Plants can sense being touched, and they can respond with strategies to defend against herbivores. To prevent overconsumption by large herbivores, plants alter their appearance by changing their size or quality, reducing the rate at which they are consumed.
Vachellia collinsii, previously Acacia collinsii, is a species of flowering plant native to Central America and parts of Africa.
Pseudomyrmex spinicola is a species of red myrmecophyte-inhabiting neotropical ants which are found only in Nicaragua and Costa Rica. They live in the thorns of tropical trees like Acacia collinsii or Acacia allenii, feeding on nectaries along with the protein and lipid-rich beltian bodies. These bodies are named for Thomas Belt, a naturalist who first described the interactions between acacias and ants in his 1874 book Naturalist in Nicaragua. Belt's book in fact described ants of this species, then unknown.
Vachellia drepanolobium, more commonly known as Acacia drepanolobium or whistling thorn, is a swollen-thorn acacia native to East Africa. The whistling thorn grows up to 6 meters tall. It produces a pair of straight spines at each node, some of which have large bulbous bases. These swollen spines are naturally hollow and occupied by any one of several symbiotic ant species. The common name of the plant is derived from the observation that when wind blows over bulbous spines in which ants have made entry and exit holes, they produce a whistling noise.
Insect ecology is the interaction of insects, individually or as a community, with the surrounding environment or ecosystem. This interaction is mostly mediated by the secretion and detection of chemicals (semiochemical) in the environment by insects. Semiochemicals are secreted by the organisms in the environment and they are detected by other organism such as insects. Semiochemicals used by organisms, including (insects) to interact with other organism either of the same species or different species can generally grouped into four. These are pheromone, synomones, allomone and kairomone. Pheromones are semiochemicals that facilitates interaction between organisms of same species. Synomones benefit both the producer and receiver, allomone is advantageous to only the producer whiles kairomones is beneficial to the receiver. Insect interact with other species within their community and these interaction include mutualism, commensalism, ammensalism, parasitism and neutralisms.
A Beltian body is a detachable tip found on the pinnules of some species of Acacia and closely related genera. Beltian bodies, named after Thomas Belt, are rich in lipids, sugars and proteins and often red in colour. They are believed to have evolved in a symbiotic relationship with ants. The ants live inside special plant structures (domatia) or near the plant and keep away herbivores.
Plants have evolved many defense mechanisms against insect herbivory in the 350 million years in which they have co-evolved. Such defenses can be broadly classified into two categories: (1) permanent, constitutive defenses, and (2) temporary, inducible defenses. These differ in that constitutive defenses are present before an herbivore attacks, while induced defenses are activated only when attacks occur. In addition to constitutive defenses, initiation of specific defense responses to herbivory is an important strategy for plant persistence and survival.
The acacia ant is a species of ant of the genus Pseudomyrmex. These arboreal, wasp-like ants have an orange-brown body around 3 mm in length and very large eyes. The acacia ant is best known and named for living in symbiosis with the bullhorn acacia throughout Central America.
Green leaf volatiles (GLV) are organic compounds released by plants. Some of these chemicals function as signaling compounds between either plants of the same species, of other species, or even different lifeforms like insects.
Plant use of endophytic fungi in defense occurs when endophytic fungi, which live symbiotically with the majority of plants by entering their cells, are utilized as an indirect defense against herbivores. In exchange for carbohydrate energy resources, the fungus provides benefits to the plant which can include increased water or nutrient uptake and protection from phytophagous insects, birds or mammals. Once associated, the fungi alter nutrient content of the plant and enhance or begin production of secondary metabolites. The change in chemical composition acts to deter herbivory by insects, grazing by ungulates and/or oviposition by adult insects. Endophyte-mediated defense can also be effective against pathogens and non-herbivory damage.
Wilhelm Boland is a German chemist.
A mycorrhizal network is an underground network found in forests and other plant communities, created by the hyphae of mycorrhizal fungi joining with plant roots. This network connects individual plants together. Mycorrhizal relationships are most commonly mutualistic, with both partners benefiting, but can be commensal or parasitic, and a single partnership may change between any of the three types of symbiosis at different times.
Tritrophic interactions in plant defense against herbivory describe the ecological impacts of three trophic levels on each other: the plant, the herbivore, and its natural enemies. They may also be called multitrophic interactions when further trophic levels, such as soil microbes, endophytes, or hyperparasitoids are considered. Tritrophic interactions join pollination and seed dispersal as vital biological functions which plants perform via cooperation with animals.
Floral scent, or flower scent, is composed of all the volatile organic compounds (VOCs), or aroma compounds, emitted by floral tissue. Other names for floral scent include, aroma, fragrance, floral odour or perfume. Flower scent of most flowering plant species encompasses a diversity of VOCs, sometimes up to several hundred different compounds. The primary functions of floral scent are to deter herbivores and especially folivorous insects, and to attract pollinators. Floral scent is one of the most important communication channels mediating plant-pollinator interactions, along with visual cues.
Plants are exposed to many stress factors such as disease, temperature changes, herbivory, injury and more. Therefore, in order to respond or be ready for any kind of physiological state, they need to develop some sort of system for their survival in the moment and/or for the future. Plant communication encompasses communication using volatile organic compounds, electrical signaling, and common mycorrhizal networks between plants and a host of other organisms such as soil microbes, other plants, animals, insects, and fungi. Plants communicate through a host of volatile organic compounds (VOCs) that can be separated into four broad categories, each the product of distinct chemical pathways: fatty acid derivatives, phenylpropanoids/benzenoids, amino acid derivatives, and terpenoids. Due to the physical/chemical constraints most VOCs are of low molecular mass, are hydrophobic, and have high vapor pressures. The responses of organisms to plant emitted VOCs varies from attracting the predator of a specific herbivore to reduce mechanical damage inflicted on the plant to the induction of chemical defenses of a neighboring plant before it is being attacked. In addition, the host of VOCs emitted varies from plant to plant, where for example, the Venus Fly Trap can emit VOCs to specifically target and attract starved prey. While these VOCs typically lead to increased resistance to herbivory in neighboring plants, there is no clear benefit to the emitting plant in helping nearby plants. As such, whether neighboring plants have evolved the capability to "eavesdrop" or whether there is an unknown tradeoff occurring is subject to much scientific debate. As related to the aspect of meaning-making, the field is also identified as phytosemiotics.
The smell of freshly cut grass is an odour caused by green leaf volatiles (GLVs) released when it is damaged. Mechanical damage to grass from activities such as lawnmowing results in the release of cis-3-hexenal and other compounds that contribute to a grassy or "green" smell. cis-3-Hexenal has a low odour detection threshold that humans can perceive at concentrations as low as 0.25 parts per billion.