Jatrorrhizine

Last updated
Jatrorrhizine
Jatrorrhizine.svg
Names
IUPAC name
3-Hydroxy-2,9,10-trimethoxy-7,8,13,13a-tetradehydroberbin-7-ium
Systematic IUPAC name
3-Hydroxy-2,9,10-trimethoxy-5,6-dihydro-7λ5-isoquinolino[3,2-a]isoquinolin-7-ylium
Other names
  • Jateorrhizine
  • Neprotin
  • Jatrochizine
  • Jatrorhizine
  • Yatrorizine
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.020.744 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 222-817-3
KEGG
PubChem CID
UNII
  • InChI=1S/C20H19NO4/c1-23-18-5-4-12-8-16-14-10-19(24-2)17(22)9-13(14)6-7-21(16)11-15(12)20(18)25-3/h4-5,8-11H,6-7H2,1-3H3/p+1 X mark.svgN
    Key: MXTLAHSTUOXGQF-UHFFFAOYSA-O X mark.svgN
  • InChI=1S/C20H19NO4/c1-23-18-5-4-12-8-16-14-10-19(24-2)17(22)9-13(14)6-7- 21(16)11-15(12)20(18)25-3/h4-5,8-11H,6-7H2,1-3H3/p+1
    Key: MXTLAHSTUOXGQF-UHFFFAOYSA-O
  • InChI=1/C20H19NO4/c1-23-18-5-4-12-8-16-14-10-19(24-2)17(22)9-13(14)6-7-21(16)11-15(12)20(18)25-3/h4-5,8-11H,6-7H2,1-3H3/p+1
    Key: MXTLAHSTUOXGQF-IKLDFBCSAC
  • COC1=C(C2=C[N+]3=C(C=C2C=C1)C4=CC(=C(C=C4CC3)O)OC)OC
Properties
C20H20NO4+1
Molar mass 338.382 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Jatrorrhizine is a protoberberine alkaloid found in some plant species, such as Enantia chlorantha (Annonaceae). [1] Synonyms that may be encountered include jateorrhizine, neprotin, jatrochizine, jatrorhizine, and yatrorizine.

Bioactive effects

Jatrorrhizine has been reported to have antiinflammatory effect, [2] and to improve blood flow and mitotic activity in thioacetamide-traumatized rat livers. [3] It was found to have antimicrobial [4] and antifungal [5] activity. It binds and noncompetitively inhibits monoamine oxidase (IC50 = 4 μM for MAO-A and 62 μM for MAO-B) [6] It interferes with multidrug resistance by cancer cells in vitro when exposed to a chemotherapeutic agent. [7] Large doses (50–100 mg/kg) reduced blood sugar levels in mice by increasing aerobic glycolysis.

Derivatives of jatrorrhizine (notably 3-alkoxy derivatives, and specifically 3-octyloxy 8-alkyljatrorrhizine derivatives such as 3-octyloxy 8-butyljatrorrhizine) have been synthesized and found to have much stronger antimicrobial effects. [8] [9] [10]

Related Research Articles

<span class="mw-page-title-main">Harmaline</span> Chemical compound

Harmaline is a fluorescent indole alkaloid from the group of harmala alkaloids and beta-carbolines. It is the partly hydrogenated form of harmine.

<span class="mw-page-title-main">Clorgiline</span> Chemical compound

Clorgiline (INN), or clorgyline (BAN), is a monoamine oxidase inhibitor (MAOI) structurally related to pargyline which is described as an antidepressant. Specifically, it is an irreversible and selective inhibitor of monoamine oxidase A (MAO-A). Clorgiline was never marketed, but it has found use in scientific research. It has been found to bind with high affinity to the σ1 receptor (Ki = 3.2 nM) and with very high affinity to the I2 imidazoline receptor (Ki = 40 pM).

<span class="mw-page-title-main">Voacangine</span> Chemical compound

Voacangine is an alkaloid found predominantly in the root bark of the Voacanga africana tree, as well as in other plants such as Tabernanthe iboga, Tabernaemontana africana, Trachelospermum jasminoides, Tabernaemontana divaricata and Ervatamia yunnanensis. It is an iboga alkaloid which commonly serves as a precursor for the semi-synthesis of ibogaine. It has been demonstrated in animals to have similar anti-addictive properties to ibogaine itself. It also potentiates the effects of barbiturates. Under UV-A and UV-B light its crystals fluoresce blue-green, and it is soluble in ethanol.

<span class="mw-page-title-main">Moronic acid</span> Chemical compound

Moronic acid is a natural triterpene. Moronic acid can be extracted from Rhus javanica, a sumac plant traditionally believed to hold medicinal applications. The molecule has also been extracted from mistletoe.

<span class="mw-page-title-main">Scoulerine</span> Chemical compound

Scoulerine, also known as discretamine and aequaline, is a benzylisoquinoline alkaloid (BIA) that is derived directly from (S)-reticuline through the action of berberine bridge enzyme. It is a precursor of other BIAs, notably berberine, noscapine, (S)-tetrahydropalmatine, and (S)-stylopine, as well as the alkaloids protopine, and sanguinarine. It is found in many plants, including opium poppy, Croton flavens, and certain plants in the genus Erythrina.

<span class="mw-page-title-main">Tryptoline</span> Chemical compound

Tryptoline, also known as tetrahydro-β-carboline and tetrahydronorharmane, is a natural organic derivative of beta-carboline. It is an alkaloid chemically related to tryptamines. Derivatives of tryptoline have a variety of pharmacological properties and are known collectively as tryptolines.

<span class="mw-page-title-main">Mitraphylline</span> Chemical compound

Mitraphylline, an oxindole derivative, is an active alkaloid in the leaves of the tree Mitragyna speciosa, commonly known as kratom. As a non-narcotic constituent, it also occurs to a significant amount in the bark of Uncaria tomentosa along with a number of isomeric alkaloids.

<span class="mw-page-title-main">7-Hydroxymitragynine</span> Opioid analgesic compound

7-Hydroxymitragynine (7-OH) is a terpenoid indole alkaloid from the plant Mitragyna speciosa, commonly known as kratom. It was first described in 1994 and is a natural product derived from mitragynine present in the kratom leaf. 7-OH binds to opioid receptors like mitragynine, but research suggests that 7-OH binds with greater efficacy.

<span class="mw-page-title-main">Maslinic acid</span> Chemical compound

Maslinic acid is a compound derived from dry olive-pomace oil which is a byproduct of olive oil extraction. It is a member of the group of triterpenes known as oleananes.

<span class="mw-page-title-main">Polygodial</span> Chemical compound

Polygodial is chemical compound found in dorrigo pepper, mountain pepper, horopito, canelo, paracress, water-pepper, and Dendrodoris limbata.

<span class="mw-page-title-main">Hodgkinsine</span> Chemical compound

Hodgkinsine is an alkaloid found in plants of the genus Psychotria, particularly Psychotria colorata, although it is also found in Psychotria lyciiflora and probably other species in this family,

<span class="mw-page-title-main">Glaucine</span> Chemical compound

Glaucine(1,2,9,10-TetraMethoxyAporphine, Bromcholitin, Glauvent, Tusidil, Tussiglaucin) is an aporphine alkaloid found in several different plant species in the family Papaveraceae such as Glaucium flavum, Glaucium oxylobum and Corydalis yanhusuo, and in other plants like Croton lechleri in the family Euphorbiaceae.

<span class="mw-page-title-main">Kavain</span> Chemical compound

Kavain is the main kavalactone found mostly in the roots of the kava plant.

<span class="mw-page-title-main">Phellodendrine</span> Chemical compound

Phellodendrine is an alkaloid isolated originally from Phellodendron amurense (Rutaceae).

<span class="mw-page-title-main">Palmatine</span> Chemical compound

Palmatine is a protoberberine alkaloid found in several plants including Phellodendron amurense, Coptis Chinensis and Corydalis yanhusuo, Tinospora cordifolia, Tinospora sagittata, Phellodendron amurense, Stephania yunnanensis.

<span class="mw-page-title-main">Matrine</span> Chemical compound

Matrine is an alkaloid found in plants from the genus Sophora. It has a variety of pharmacological effects, including anti-cancer effects, as well as κ-opioid and μ-opioid receptor agonism.

<span class="mw-page-title-main">Paeonol</span> Chemical compound

Paeonol is a phenolic compound found in peonies such as Paeonia suffruticosa, in Arisaema erubescens, and in Dioscorea japonica. It is a chemical compound found in some traditional Chinese medicines.

<span class="mw-page-title-main">Kopsanone</span> Chemical compound

Kopsanone is an alkaloid isolated from Aspidosperma.

Guineesine is a compound isolated from long pepper and black pepper.

<span class="mw-page-title-main">Tabernaemontanine</span> Chemical compound

Tabernaemontanine is a naturally occurring monoterpene indole alkaloid found in several species in the genus Tabernaemontana including Tabernaemontana divaricata.

References

  1. "jatrorrhizine - Compound Summary (CID 72323)". PubChem.
  2. Arens, H; Fischer, H; Leyck, S; Römer, A; Ulbrich, B (1985). "Antiinflammatory Compounds from Plagiorhegma dubium Cell Culture1". Planta Medica. 51 (1): 52–6. doi:10.1055/s-2007-969392. PMID   17340402.
  3. Virtanen, P; Lassila, V; Njimi, T; Mengata, DE (1988). "Natural protoberberine alkaloids from Enantia chlorantha, palmatine, columbamine and jatrorrhizine for thioacetamide-traumatized rat liver". Acta Anatomica. 131 (2): 166–70. doi:10.1159/000146507. PMID   3369286.
  4. Moody, JO; Bloomfield, SF; Hylands, PJ (1995). "In-vitro evaluation of the antimicrobial activities of Enantia chlorantha Oliv. Extractives". African Journal of Medicine and Medical Sciences. 24 (3): 269–73. PMID   8798963.
  5. Volleková, A; Kost'álová, D; Kettmann, V; Tóth, J (2003). "Antifungal activity of Mahonia aquifolium extract and its major protoberberine alkaloids". Phytotherapy Research. 17 (7): 834–7. doi:10.1002/ptr.1256. PMID   12916091. S2CID   33470505.
  6. Kong, LD; Cheng, CH; Tan, RX (2001). "Monoamine oxidase inhibitors from rhizoma of Coptis chinensis". Planta Medica. 67 (1): 74–6. doi:10.1055/s-2001-10874. PMID   11270727.
  7. Zhang, H; Yang, L; Liu, S; Ren, L (2001). "Study on active constituents of traditional Chinese medicine reversing multidrug resistance of tumor cells in vitro". Zhong Yao Cai. 24 (9): 655–7. PMID   11799777.
  8. Wang, LJ; Ye, XL; Li, XG; Sun, QL; Yu, G; Cao, XG; Liang, YT; Zhang, HS; Zhou, JZ (2008). "Synthesis and antimicrobial activity of 3-alkoxyjatrorrhizine derivatives". Planta Medica. 74 (3): 290–2. doi:10.1055/s-2008-1034312. PMID   18300191.
  9. Wang, LJ; Ye, XL; Chen, Z; Li, XG; Sun, QL; Zhang, BS; Cao, XG; Yu, G; Niu, XH (2009). "Synthesis and antimicrobial activity of 3-octyloxy-8-alkyljatrorrhizine derivatives". Journal of Asian Natural Products Research. 11 (4): 365–70. doi:10.1080/10286020902727447. PMID   19431018. S2CID   29474375.
  10. Bhadra, K; Kumar, GS (2010). "Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: Binding aspects and implications for drug design". Medicinal Research Reviews. 31 (6): 821–862. doi: 10.1002/med.20202 . PMID   20077560. S2CID   206250975.