John Lindl

Last updated
John D. Lindl
Born (1946-07-27) July 27, 1946 (age 77)
NationalityAmerican
Education Cornell University (B.S.)
Princeton University (M.S., Ph.D.)
Awards
Scientific career
Fields Plasma physics
Thesis Turbulent electron viscosity due to electrostatic instabilities in plasmas with large current shears (1972)
Doctoral advisor John M. Dawson

John D. Lindl (born July 27, 1946 in Toledo, Ohio) is an American physicist who specializes in inertial confinement fusion (ICF). [1] He is currently the chief scientist of the National Ignition Facility at the Lawrence Livermore National Laboratory. [2]

Contents

Early life and career

Lindl obtained a B.S in engineering physics from Cornell University in 1968 and a Ph.D. in astrophysics from Princeton University in 1972. [3] His Ph.D. thesis advisor was John M. Dawson. [4] [5]

In the same year, Lindl joined the Lawrence Livermore National Laboratory (LLNL), where he worked for John Nuckolls in the early days of inertial fusion research (e.g. optimal target design for lasers and particle beams, hydrodynamic instabilities, plasma development in the cavity and cavity design, implosion symmetry). In 1976, he was involved in the design of the first laser fusion experiments with the Cyclops laser. In 1983, he was deputy program manager for theory and target design in the ICF program of the LLNL. In 1990, he became head of the Nova Laser program to demonstrate the use of a 1 to 2 megajoule laser for inertial fusion. After the ICF research at LLNL became declassified in 1993, Lindl wrote an overview article in Physics of Plasmas, [6] which then led to his book on inertial fusion in 1997. Lindl became the chief scientist at the National Ignition Facility in 2005, whose construction began in 1997 and was inaugurated in 2009 (with the first large-scale laser target experiments). [7]

He has also recently been involved in magnetic fusion research at the LLNL's Sustained Spheromak Physics Experiment (SSPX).[ citation needed ]

Honors and awards

Lindl is a fellow of the American Physical Society and the American Association for the Advancement of Science. He has received awards such as the American Nuclear Society's Edward Teller Award in 1993, [8] the Ernest Orlando Lawrence Award in 1994, and the Fusion Power Associates Leaders Award in 2000. [4]

In 2007, Lindl received the James Clerk Maxwell Prize for Plasma Physics for "30 years of continuous plasma physics contributions in high energy density physics and inertial confinement fusion research and scientific management". [9]

Books

Related Research Articles

Lawrence Livermore National Laboratory (LLNL) is a federally funded research and development center in Livermore, California, United States. Originally established in 1952, the laboratory now is sponsored by the United States Department of Energy and administrated by Lawrence Livermore National Security, LLC.

<span class="mw-page-title-main">Inertial confinement fusion</span> Branch of fusion energy research

Inertial confinement fusion (ICF) is a fusion energy process that initiates nuclear fusion reactions by compressing and heating targets filled with fuel. The targets are small pellets, typically containing deuterium (2H) and tritium (3H).

This timeline of nuclear fusion is an incomplete chronological summary of significant events in the study and use of nuclear fusion.

<span class="mw-page-title-main">National Ignition Facility</span> American nuclear fusion institute

The National Ignition Facility (NIF) is a laser-based inertial confinement fusion (ICF) research device, located at Lawrence Livermore National Laboratory in Livermore, California, United States. NIF's mission is to achieve fusion ignition with high energy gain. It achieved the first instance of scientific breakeven controlled fusion in an experiment on December 5, 2022, with an energy gain factor of 1.5. It supports nuclear weapon maintenance and design by studying the behavior of matter under the conditions found within nuclear explosions.

<span class="mw-page-title-main">Fusion energy gain factor</span> Ratio of energy in to out in a fusion power plant

A fusion energy gain factor, usually expressed with the symbol Q, is the ratio of fusion power produced in a nuclear fusion reactor to the power required to maintain the plasma in steady state. The condition of Q = 1, when the power being released by the fusion reactions is equal to the required heating power, is referred to as breakeven, or in some sources, scientific breakeven.

<span class="mw-page-title-main">Shiva laser</span>

The Shiva laser was a powerful 20-beam infrared neodymium glass laser built at Lawrence Livermore National Laboratory in 1977 for the study of inertial confinement fusion (ICF) and long-scale-length laser-plasma interactions. Presumably, the device was named after the multi-armed form of the Hindu god Shiva, due to the laser's multi-beamed structure. Shiva was instrumental in demonstrating a particular problem in compressing targets with lasers, leading to a major new device being constructed to address these problems, the Nova laser.

<span class="mw-page-title-main">Nova (laser)</span> High-power laser at the Lawrence Livermore National Laboratory

Nova was a high-power laser built at the Lawrence Livermore National Laboratory (LLNL) in California, United States, in 1984 which conducted advanced inertial confinement fusion (ICF) experiments until its dismantling in 1999. Nova was the first ICF experiment built with the intention of reaching "ignition", a chain reaction of nuclear fusion that releases a large amount of energy. Although Nova failed in this goal, the data it generated clearly defined the problem as being mostly a result of Rayleigh–Taylor instability, leading to the design of the National Ignition Facility, Nova's successor. Nova also generated considerable amounts of data on high-density matter physics, regardless of the lack of ignition, which is useful both in fusion power and nuclear weapons research.

<span class="mw-page-title-main">Inertial fusion power plant</span>

Inertial Fusion Energy is a proposed approach to building a nuclear fusion power plant based on performing inertial confinement fusion at industrial scale. This approach to fusion power is still in a research phase. ICF first developed shortly after the development of the laser in 1960, but was a classified US research program during its earliest years. In 1972, John Nuckolls wrote a paper predicting that compressing a target could create conditions where fusion reactions are chained together, a process known as fusion ignition or a burning plasma. On August 8, 2021, the NIF at Livermore National Laboratory became the first ICF facility in the world to demonstrate this. This breakthrough drove the US Department of Energy to create an Inertial Fusion Energy program in 2022 with a budget of 3 million dollars in its first year.

<span class="mw-page-title-main">Argus laser</span>

Argus was a two-beam high power infrared neodymium doped silica glass laser with a 20 cm (7.9 in) output aperture built at Lawrence Livermore National Laboratory in 1976 for the study of inertial confinement fusion. Argus advanced the study of laser-target interaction and paved the way for the construction of its successor, the 20 beam Shiva laser.

<span class="mw-page-title-main">HiPER</span> Planned ICF powered by lasers

The High Power laser Energy Research facility (HiPER), is a proposed experimental laser-driven inertial confinement fusion (ICF) device undergoing preliminary design for possible construction in the European Union. As of 2019, the effort appears to be inactive.

<span class="mw-page-title-main">Ed Moses (physicist)</span> American physicist

Edward Moses is an American physicist and is the former president of the Giant Magellan Telescope Organization. He is a past principal associate director for the National Ignition Facility & Photon Science Directorate, where he led the California-based NIF, the largest experimental science facility in the US and the world's most energetic laser, that hopes to demonstrate the first feasible example of usable nuclear fusion.

Fusion ignition is the point at which a nuclear fusion reaction becomes self-sustaining. This occurs when the energy being given off by the reaction heats the fuel mass more rapidly than it cools. In other words, fusion ignition is the point at which the increasing self-heating of the nuclear fusion removes the need for external heating. This is quantified by the Lawson criterion. Ignition can also be defined by the fusion energy gain factor.

LASNEX is a computer program that simulates the interactions between x-rays and a plasma, along with many effects associated with these interactions. The program is used to predict the performance of inertial confinement fusion (ICF) devices such as the Nova laser or proposed particle beam "drivers". Versions of LASNEX have been used since the late 1960s or early 1970s, and the program has been constantly updated. LASNEX's existence was mentioned in John Nuckolls' seminal paper in Nature in 1972 that first widely introduced the ICF concept, saying it was "...like breaking an enemy code. It tells you how many divisions to bring to bear on a problem."

<span class="mw-page-title-main">Laser Inertial Fusion Energy</span> Early 2010s fusion energy effort

LIFE, short for Laser Inertial Fusion Energy, was a fusion energy effort run at Lawrence Livermore National Laboratory between 2008 and 2013. LIFE aimed to develop the technologies necessary to convert the laser-driven inertial confinement fusion concept being developed in the National Ignition Facility (NIF) into a practical commercial power plant, a concept known generally as inertial fusion energy (IFE). LIFE used the same basic concepts as NIF, but aimed to lower costs using mass-produced fuel elements, simplified maintenance, and diode lasers with higher electrical efficiency.

The Edward Teller Award is an award presented every two years by the American Nuclear Society for "pioneering research and leadership in the use of laser and ion-particle beams to produce unique high-temperature and high-density matter for scientific research and for controlled thermonuclear fusion". It was established in 1999 and is named after Edward Teller. The award carries a $2000 cash prize and an engraved silver medal.

Heavy ion fusion is a fusion energy concept that uses a stream of high-energy ions from a particle accelerator to rapidly heat and compress a small pellet of fusion fuel. It is a subclass of the larger inertial confinement fusion (ICF) approach, replacing the more typical laser systems with an accelerator.

The history of nuclear fusion began early in the 20th century as an inquiry into how stars powered themselves and expanded to incorporate a broad inquiry into the nature of matter and energy, as potential applications expanded to include warfare, energy production and rocket propulsion.

Tammy Ma is an American plasma physicist who works on inertial confinement fusion at the Lawrence Livermore National Laboratory.

Andrea "Annie" Kritcher is an American nuclear engineer and physicist who works at the Lawrence Livermore National Laboratory. She was responsible for the development of Hybrid-E, a capsule that enables inertial confinement fusion. She was elected Fellow of the American Physical Society in 2022.

References

  1. "Lindl, John". history.aip.org. Retrieved February 27, 2020.
  2. "LLNL Distinguished Members of Technical Staff". lasers.llnl.gov. Retrieved February 27, 2020.
  3. "Management: John Lindl, NIF & Photon Science". May 27, 2010. Archived from the original on May 27, 2010. Retrieved February 27, 2020.
  4. 1 2 "People: People of NIF, John Lindl, NIF & Photon Science". May 27, 2010. Archived from the original on May 27, 2010. Retrieved February 27, 2020.
  5. "Graduate Theses | Princeton Program in Plasma Physics". plasma.princeton.edu. Retrieved February 27, 2020.
  6. Lindl, John D.; Amendt, Peter; Berger, Richard L.; Glendinning, S. Gail; Glenzer, Siegfried H.; Haan, Steven W.; Kauffman, Robert L.; Landen, Otto L.; Suter, Laurence J. (2004). "The physics basis for ignition using indirect-drive targets on the National Ignition Facility". Physics of Plasmas. 11 (2): 339–491. doi:10.1063/1.1578638. ISSN   1070-664X.
  7. "Newsroom: Project Status, NIF & Photon Science". May 28, 2010. Archived from the original on May 28, 2010. Retrieved February 27, 2020.
  8. "ANS / Honors and Awards / Recipients / Edward Teller Award". www.ans.org. Retrieved February 29, 2020.
  9. "2007 James Clerk Maxwell Prize for Plasma Physics Recipient". American Physical Society. Retrieved February 27, 2020.{{cite web}}: CS1 maint: url-status (link)