Warren B. Mori

Last updated

Warren B. Mori
Born
Warren Bicknell Mori

(1959-08-08) August 8, 1959 (age 64)
Education UC Berkeley (B.S.),
UCLA (M.S., Ph.D.)
Awards
Scientific career
Fields Plasma physics
Institutions UCLA
Thesis Theory and Simulations on Beat Wave Excitation of Relativisitic Plasma Waves  (1987)
Doctoral advisor Francis F. Chen,
John M. Dawson,
Chandrashekhar J. Joshi

Warren Bicknell Mori (born August 8, 1959) is an American computational plasma physicist and a professor at the University of California, Los Angeles. [1] He was awarded the 2020 James Clerk Maxwell Prize for Plasma Physics [2] for his contributions to the theory and computer simulations of non-linear processes in plasma-based acceleration using kinetic theory, [3] [4] as well as for his research in relativistically intense lasers and beam-plasma interactions. [5] [6]

Contents

Early life and career

Mori received a Bachelor of Science from the University of California, Berkeley in 1981. He then went to the University of California, Los Angeles (UCLA) and obtained a Master of Science and a Doctor of Philosophy (Ph.D.) in 1984 and 1987 respectively. [1] [2] For his Ph.D. in electrical engineering, Mori was supervised by plasma physicists Francis F. Chen, John M. Dawson and Chandrashekhar J. Joshi, [7] all of whom were noted for winning the James Clerk Maxwell Prize for Plasma Physics. Mori then remained at UCLA, and has been there ever since.

Mori was a director of UCLA's Institute for Digital Research and Education. [8] He is currently a director of UCLA's Particle-in-Cell and Kinetic Simulation Software Center [9] and Plasma Simulation Group. [10]

Honors and awards

Mori is a fellow of the American Physical Society [11] and the Institute of Electrical and Electronics Engineers. [2]

In 1995, Mori received the International Center for Theoretical Physics Medal for Excellence in Nonlinear Plasma Physics by a Young Researcher. He also won the 2016 Advanced Accelerator Concepts Prize of the Lawrence Berkeley National Laboratory for "his leadership and pioneering contributions in theory and particle-in-cell code simulations of plasma based particle acceleration". [12] [2]

Mori was awarded the 2020 James Clerk Maxwell Prize for Plasma Physics for "leadership in and pioneering contributions to the theory and kinetic simulations of nonlinear processes in plasma-based acceleration, and relativistically intense laser and beam plasma interactions". [2]

Related Research Articles

<span class="mw-page-title-main">Synchrotron radiation</span> Electromagnetic radiation emitted by charged particles accelerated perpendicular to their velocity

Synchrotron radiation is the electromagnetic radiation emitted when relativistic charged particles are subject to an acceleration perpendicular to their velocity. It is produced artificially in some types of particle accelerators or naturally by fast electrons moving through magnetic fields. The radiation produced in this way has a characteristic polarization, and the frequencies generated can range over a large portion of the electromagnetic spectrum.

<span class="mw-page-title-main">Linear particle accelerator</span> Type of particle accelerator

A linear particle accelerator is a type of particle accelerator that accelerates charged subatomic particles or ions to a high speed by subjecting them to a series of oscillating electric potentials along a linear beamline. The principles for such machines were proposed by Gustav Ising in 1924, while the first machine that worked was constructed by Rolf Widerøe in 1928 at the RWTH Aachen University. Linacs have many applications: they generate X-rays and high energy electrons for medicinal purposes in radiation therapy, serve as particle injectors for higher-energy accelerators, and are used directly to achieve the highest kinetic energy for light particles for particle physics.

Accelerator physics is a branch of applied physics, concerned with designing, building and operating particle accelerators. As such, it can be described as the study of motion, manipulation and observation of relativistic charged particle beams and their interaction with accelerator structures by electromagnetic fields.

In plasma physics, the particle-in-cell (PIC) method refers to a technique used to solve a certain class of partial differential equations. In this method, individual particles in a Lagrangian frame are tracked in continuous phase space, whereas moments of the distribution such as densities and currents are computed simultaneously on Eulerian (stationary) mesh points.

Plasma acceleration is a technique for accelerating charged particles, such as electrons or ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures. These plasma acceleration structures are created using either ultra-short laser pulses or energetic particle beams that are matched to the plasma parameters. The technique offers a way to build affordable and compact particle accelerators.

<span class="mw-page-title-main">AWAKE</span>

The AWAKE facility at CERN is a proof-of-principle experiment, which investigates wakefield plasma acceleration using a proton bunch as a driver, a world-wide first. It aims to accelerate a low-energy witness bunch of electrons from 15 to 20 MeV to several GeV over a short distance by creating a high acceleration gradient of several GV/m. Particle accelerators currently in use, like CERN's LHC, use standard or superconductive RF-cavities for acceleration, but they are limited to an acceleration gradient in the order of 100 MV/m.

<span class="mw-page-title-main">VSim</span>

VSim is a cross-platform computational framework for multiphysics, compatible with Windows, Linux, and macOS.

A double layer is a structure in a plasma consisting of two parallel layers of opposite electrical charge. The sheets of charge, which are not necessarily planar, produce localised excursions of electric potential, resulting in a relatively strong electric field between the layers and weaker but more extensive compensating fields outside, which restore the global potential. Ions and electrons within the double layer are accelerated, decelerated, or deflected by the electric field, depending on their direction of motion.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

John Myrick Dawson was an American computational physicist and the father of plasma-based acceleration techniques. Dawson earned his degrees in physics from the University of Maryland, College Park: a B.S. in 1952 and Ph.D. in 1957. His thesis "Distortion of Atoms and Molecules in Dense Media" was prepared under the guidance of Zaka Slawsky.

Chandrashekhar Janardan Joshi is an Indian–American experimental plasma physicist. He is known for his pioneering work in plasma-based particle acceleration techniques for which he won the 2006 James Clerk Maxwell Prize for Plasma Physics and the 2023 Hannes Alfvén Prize.

John Robert Cary is a professor of physics at the University of Colorado Boulder and CEO of Tech-X Corporation, which he co-founded in 1994.

James F. Drake is an American theoretical physicist who specializes in plasma physics. He is known for his studies on plasma instabilities and magnetic reconnection for which he was awarded the 2010 James Clerk Maxwell Prize for Plasma Physics by the American Physical Society.

Phillip A. Sprangle is an American physicist who specializes in the applications of plasma physics. He is known for his work involving the propagation of high-intensity laser beams in the atmosphere, the interaction of ultra-short laser pulses from high-power lasers with matter, nonlinear optics and nonlinear plasma physics, free electron lasers, and lasers in particle acceleration.

Jürgen Meyer-ter-Vehn is a German theoretical physicist who specializes in laser-plasma interactions at the Max Planck Institute for Quantum Optics. He published under the name Meyer until 1973.

Patrick Mora is a French theoretical plasma physicist who specializes in laser-plasma interactions. He was awarded the 2014 Hannes Alfvén Prize and 2019 Edward Teller Award for his contributions to the field of laser-plasma physics.

Toshiki Tajima is a Japanese theoretical plasma physicist known for pioneering the laser wakefield acceleration technique with John M. Dawson in 1979. The technique is used to accelerate particles in a plasma and was experimentally realized in 1994, for which Tajima received several awards such as the Nishina Memorial Prize (2006), the Enrico Fermi Prize (2015), the Robert R. Wilson Prize (2019), the Hannes Alfvén Prize (2019) and the Charles Hard Townes Award (2020).

<span class="mw-page-title-main">Victor Malka</span> French physicist (born 1960)

Victor Malka is a French plasma physicist and a pioneer in laser plasma acceleration. In 2004, Malka demonstrated that high energy monoenergetic electron beams could be generated using the technique of laser wakefield acceleration, and subsequently used them to develop compact X-ray and gamma radiation sources with applications in medicine, security technology and phase-contrast imaging. For these contributions to the field, he was awarded the IEEE Particle Accelerator Science and Technology Award in 2007, the Julius Springer Prize for Applied Physics in 2017, and the Hannes Alfvén Prize in 2019.

James Benjamin Rosenzweig is a experimental plasma physicist and a distinguished professor at the University of California, Los Angeles (UCLA). In the field of plasma wakefield acceleration, he is regarded as the father of the non-linear "blowout" interaction regime, where a laser beam, when fired into a plasma at intense levels, expels electrons from the plasma and creates a spherical structure that can effectively focus and accelerate the plasma.

References

  1. 1 2 "Warren Mori". www.pa.ucla.edu. Retrieved July 24, 2020.
  2. 1 2 3 4 5 "2020 James Clerk Maxwell Prize for Plasma Physics Recipient". American Physical Society. Retrieved July 24, 2020.
  3. Fonseca, R. A.; Silva, L. O.; Tsung, F. S.; Decyk, V. K.; Lu, W.; Ren, C.; Mori, W. B.; Deng, S.; Lee, S.; Katsouleas, T.; Adam, J. C. (2002). "OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators". In Sloot, Peter M. A.; Hoekstra, Alfons G.; Tan, C. J. Kenneth; Dongarra, Jack J. (eds.). Computational Science — ICCS 2002. Lecture Notes in Computer Science. Vol. 2331. Berlin, Heidelberg: Springer. pp. 342–351. doi: 10.1007/3-540-47789-6_36 . ISBN   978-3-540-47789-1.
  4. Huang, C.; Decyk, V. K.; Ren, C.; Zhou, M.; Lu, W.; Mori, W. B.; Cooley, J. H.; Antonsen, T. M.; Katsouleas, T. (2006). "QUICKPIC: A highly efficient particle-in-cell code for modeling wakefield acceleration in plasmas". Journal of Computational Physics. 217 (2): 658–679. Bibcode:2006JCoPh.217..658H. doi:10.1016/j.jcp.2006.01.039. ISSN   0021-9991.
  5. Mangles, S. P. D.; Murphy, C. D.; Najmudin, Z.; Thomas, A. G. R.; Collier, J. L.; Dangor, A. E.; Divall, E. J.; Foster, P. S.; Gallacher, J. G.; Hooker, C. J.; Jaroszynski, D. A. (2004). "Monoenergetic beams of relativistic electrons from intense laser–plasma interactions". Nature. 431 (7008): 535–538. Bibcode:2004Natur.431..535M. doi:10.1038/nature02939. ISSN   1476-4687. PMID   15457251. S2CID   4352422.
  6. Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas, Thomas; Kirby, Neil; Lu, Wei (2007). "Energy doubling of 42 GeV electrons in a metre-scale plasma wakefield accelerator". Nature. 445 (7129): 741–744. Bibcode:2007Natur.445..741B. doi:10.1038/nature05538. ISSN   1476-4687. PMID   17301787. S2CID   4334568.
  7. Mori, W. B. (1987) Theory and Simulations on Beat Wave Excitation of Relativisitic Plasma Waves, Ph.D. Thesis.
  8. "Warren Mori – Institute for Digital Research and Education" . Retrieved July 24, 2020.
  9. "Particle-in-Cell and Kinetic Simulation Software Center – Opportunities". PICKSC. Archived from the original on October 29, 2019. Retrieved July 24, 2020.
  10. "UCLA Plasma Simulation". plasmasim.physics.ucla.edu. Archived from the original on April 20, 2020. Retrieved July 24, 2020.
  11. "APS Fellow Archive". American Physical Society. Retrieved July 24, 2020.
  12. "AAC Prize". sites.google.com. Retrieved July 24, 2020.