Phillip A. Sprangle | |
---|---|
Born | |
Nationality | American |
Education | Polytechnic Institute of Brooklyn (BS) University of Puerto Rico (MS) Cornell University (Ph.D.) |
Awards | |
Scientific career | |
Fields | Plasma physics |
Thesis | (1973) |
Phillip A. Sprangle (born September 27, 1944, in Brooklyn) is an American physicist who specializes in the applications of plasma physics. [1] He is known for his work involving the propagation of high-intensity laser beams in the atmosphere, [2] the interaction of ultra-short laser pulses from high-power lasers with matter, [3] nonlinear optics and nonlinear plasma physics, [4] free electron lasers, [5] and lasers in particle acceleration. [6] [7]
Sprangle received a bachelor's degree in electrical engineering from the Polytechnic Institute of Brooklyn in 1967, a master's degree from the University of Puerto Rico in 1969, and a Ph.D. in applied physics from Cornell University (where he had been since 1969) in 1973. From 1972, he was at the Naval Research Laboratory, from 1982 as a senior scientist. There he headed the beam physics department. He is a professor at the University of Maryland.
In 2008, Sprangle received the IEEE Plasma Science Award, in 1991 the International Free Electron Laser Prize, in 1986 the E. O. Hulburt Science and Engineering Award, in 2008 an award as Top Navy Scientist and Engineer of the Year and in 2012 the Fred E. Saalfeld Award for Outstanding Lifetime Achievement Scientist from the Office of Naval Research. [1]
In 2013, he received the James Clerk Maxwell Prize for Plasma Physics, for “pioneering contributions to the physics of high intensity laser interactions with plasmas, and to the development of plasma accelerators, free-electron lasers, gyrotrons and high current electron accelerators". [8] [9]
He is a fellow of the American Physical Society, the Optical Society of America and the IEEE. [10]
SLAC National Accelerator Laboratory, originally named the Stanford Linear Accelerator Center, is a federally funded research and development center in Menlo Park, California, United States. Founded in 1962, the laboratory is now sponsored by the United States Department of Energy and administrated by Stanford University. It is the site of the Stanford Linear Accelerator, a 3.2 kilometer (2-mile) linear accelerator constructed in 1966 that could accelerate electrons to energies of 50 GeV.
A free-electron laser (FEL) is a fourth generation light source producing extremely brilliant and short pulses of radiation. An FEL functions much as a laser but employs relativistic electrons as a gain medium instead of using stimulated emission from atomic or molecular excitations. In an FEL, a bunch of electrons passes through a magnetic structure called an undulator or wiggler to generate radiation, which re-interacts with the electrons to make them emit coherently, exponentially increasing its intensity.
A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.
Plasma acceleration is a technique for accelerating charged particles, such as electrons or ions, using the electric field associated with electron plasma wave or other high-gradient plasma structures. These plasma acceleration structures are created using either ultra-short laser pulses or energetic particle beams that are matched to the plasma parameters. The technique offers a way to build affordable and compact particle accelerators.
Self-focusing is a non-linear optical process induced by the change in refractive index of materials exposed to intense electromagnetic radiation. A medium whose refractive index increases with the electric field intensity acts as a focusing lens for an electromagnetic wave characterized by an initial transverse intensity gradient, as in a laser beam. The peak intensity of the self-focused region keeps increasing as the wave travels through the medium, until defocusing effects or medium damage interrupt this process. Self-focusing of light was discovered by Gurgen Askaryan.
A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies to contain them in well-defined beams. Small accelerators are used for fundamental research in particle physics. Accelerators are also used as synchrotron light sources for the study of condensed matter physics. Smaller particle accelerators are used in a wide variety of applications, including particle therapy for oncological purposes, radioisotope production for medical diagnostics, ion implanters for the manufacture of semiconductors, and accelerator mass spectrometers for measurements of rare isotopes such as radiocarbon.
John Myrick Dawson was an American computational physicist and the father of plasma-based acceleration techniques. Dawson earned his degrees in physics from the University of Maryland, College Park: a B.S. in 1952 and Ph.D. in 1957. His thesis "Distortion of Atoms and Molecules in Dense Media" was prepared under the guidance of Zaka Slawsky.
The Breit–Wheeler process or Breit–Wheeler pair production is a proposed physical process in which a positron–electron pair is created from the collision of two photons. It is the simplest mechanism by which pure light can be potentially transformed into matter. The process can take the form γ γ′ → e+ e− where γ and γ′ are two light quanta.
Chandrashekhar Janardan Joshi is an Indian–American experimental plasma physicist. He is known for his pioneering work in plasma-based particle acceleration techniques for which he won the 2006 James Clerk Maxwell Prize for Plasma Physics and the 2023 Hannes Alfvén Prize.
Norman Rostoker was a Canadian plasma physicist known for being a pioneer in developing clean plasma-based fusion energy. He co-founded TAE Technologies in 1998 and held 27 U.S. Patents on plasma-based fusion accelerators.
John Robert Cary is a professor of physics at the University of Colorado Boulder and CEO of Tech-X Corporation, which he co-founded in 1994.
Nathaniel Joseph Fisch is an American plasma physicist known for pioneering the excitation of electric currents in plasmas using electromagnetic waves, which was then used in tokamak experiments. This contributed to an increased understanding of plasma wave–particle interactions in the field for which he was awarded the James Clerk Maxwell Prize for Plasma Physics in 2005 and the Hannes Alfvén Prize in 2015.
Dmitri Dmitriyevich Ryutov is a Russian theoretical plasma physicist.
Valery A. Godyak is a Russian-American physicist who specializes in plasma physics. As a scientist, he made fundamental contributions to the understanding of radio frequency (RF) induced discharges in plasmas as well as in associated nonlinear phenomena. As an industrial physicist, he developed induction lamps such as the Icetron-Endura RF lamp and received honors from companies such as Osram Sylvania and Siemens.
Patrick Mora is a French theoretical plasma physicist who specializes in laser-plasma interactions. He was awarded the 2014 Hannes Alfvén Prize and 2019 Edward Teller Award for his contributions to the field of laser-plasma physics.
Toshiki Tajima is a Japanese theoretical plasma physicist known for pioneering the laser wakefield acceleration technique with John M. Dawson in 1979. The technique is used to accelerate particles in a plasma and was experimentally realized in 1994, for which Tajima received several awards such as the Nishina Memorial Prize (2006), the Enrico Fermi Prize (2015), the Robert R. Wilson Prize (2019), the Hannes Alfvén Prize (2019) and the Charles Hard Townes Award (2020).
Victor Malka is a French plasma physicist and a pioneer in laser plasma acceleration. In 2004, Malka demonstrated that high energy monoenergetic electron beams could be generated using the technique of laser wakefield acceleration, and subsequently used them to develop compact X-ray and gamma radiation sources with applications in medicine, security technology and phase-contrast imaging. For these contributions to the field, he was awarded the IEEE Particle Accelerator Science and Technology Award in 2007, the Julius Springer Prize for Applied Physics in 2017, and the Hannes Alfvén Prize in 2019.
Sergei Vladimirovich Bulanov, is a Russian physicist. He received the 1983 State Prize of the USSR, the 2016 Hannes Alfvén Prize for "contributions to the development of large-scale next-step devices in high-temperature plasma physics research", and the Order of Rising Sun with Gold Rays and Rosette in 2020.
Warren Bicknell Mori is an American computational plasma physicist and a professor at the University of California, Los Angeles. He was awarded the 2020 James Clerk Maxwell Prize for Plasma Physics for his contributions to the theory and computer simulations of non-linear processes in plasma-based acceleration using kinetic theory, as well as for his research in relativistically intense lasers and beam-plasma interactions.
James Benjamin Rosenzweig is a experimental plasma physicist and a distinguished professor at the University of California, Los Angeles (UCLA). In the field of plasma wakefield acceleration, he is regarded as the father of the non-linear "blowout" interaction regime, where a laser beam, when fired into a plasma at intense levels, expels electrons from the plasma and creates a spherical structure that can effectively focus and accelerate the plasma.