LRRIQ3

Last updated
LRRIQ3
Identifiers
Aliases LRRIQ3 , LRRC44, leucine-rich repeats and IQ motif containing 3, leucine rich repeats and IQ motif containing 3
External IDs OMIM: 617957; MGI: 1921685; HomoloGene: 23668; GeneCards: LRRIQ3; OMA:LRRIQ3 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001105659
NM_145258
NM_001322315

NM_028938

RefSeq (protein)

NP_001099129
NP_001309244

NP_083214

Location (UCSC) Chr 1: 74.03 – 74.2 Mb Chr 3: 154.8 – 154.9 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

LRRIQ3 (Leucine-rich repeats and IQ motif containing 3), which is also known as LRRC44, is a protein that in humans is encoded by the LRRIQ3 gene. [5] It is predominantly expressed in the testes, and is linked to a number of diseases. [6]

Contents

Gene

Locus

LRRIQ3 is found on the minus strand of the end of the short arm of human chromosome 1 at 1p31.1. [7]

Overall Structure

There are a total of 7 exons in the putative sequence of LRRIQ3. [7]

mRNA

Expression

LRRIQ3 is expressed as 2 primary isoforms, which produce proteins of length 624 amino acids and 464 amino acids respectively. [7] It is expressed at low levels in human and brown rat tissues, [8] [9] with highest expression levels in testes tissue. There are relatively high expression levels in T cells, the epididymis, the kidney, and a number of glands. [10]

Protein

General Characteristics and Compositional Features

Human protein LRRIQ3 Isoform 1 consists of 624 amino acids, and has a molecular weight of 73.7 kDa. The isoelectric point of LRRIQ3 is 9.73, which suggests that LRRIQ3 is basic at normal physiological pH (~7.4). [11] Additionally, there is strong evidence that human LRRIQ3 localizes to the plasma membrane from antibody staining. [12] LRRIQ3 is rich in lysine residues, with a total of 82 lysines. It is also slightly low on glycines. [13]

Domains and Motifs

In total, there are 4 conserved domains within LRRIQ3: 3 leucine-rich repeats and 1 IQ calmodulin-binding motif. [13] Leucine-rich repeats are typically involved in protein-protein interactions, and form a characteristic α/β horseshoe fold. [14] [15] An IQ motif provides a binding site for calmodulin (CaM) or CaM-like proteins. [16]

Secondary and Tertiary Structure

LRRIQ3 is predicted to be mostly alpha-helical in structure, including a long alpha-helical C-terminal domain. It is also predicted to function as a monomer. [17] [18] [19] [20]

The best model generated by I-TASSER for LRRIQ3. The 3 leucine-rich repeats are shown in red, salmon, and magenta respectively. The IQ calmodulin-binding domain is shown in green. LRRIQ3 I-TASSER Model.png
The best model generated by I-TASSER for LRRIQ3. The 3 leucine-rich repeats are shown in red, salmon, and magenta respectively. The IQ calmodulin-binding domain is shown in green.

Post-translational Modifications

LRRIQ3 is predicted to undergo many post-translational modifications. These include O-GlcNAcylation, SUMOylation, ubiquitination, and phosphorylation. [22] [23] LRRIQ3 is predicted to have 4 well conserved SUMOylation sites and 1 well conserved ubiquitination site. [22] A representation of these post-translational modifications is shown in the figure below.

A representation of the domains, motif, and post-translational modification sites of LRRIQ3, generated using DOG 2.0. LRRIQ3 Domains and Motifs.png
A representation of the domains, motif, and post-translational modification sites of LRRIQ3, generated using DOG 2.0.

Protein Interactions

There is evidence that LRRIQ3 interacts with a number of proteins from two-hybrid assays and affinity chromatography. The proteins LRRIQ3 interact with include LYN, NCK2, GNB4, and ABL1. [25] [26] These proteins are associated with cell signalling, cytoskeletal reorganization, and cell differentiation, as well as others. [27] [28] [29] [30]

Homology and evolution

Paralogs and Orthologs

No paralogs exists for LRRIQ3 in humans. [6] However, there are a number of orthologs, as reported by BLAST, some of which are listed below. [31] The number of years since divergence from the human protein, listed in "million of years ago (MYA)" below, were calculated using TimeTree. [32]

Orthologs to Human LRRIQ3 Protein (NP_001099129.1)
Genus and speciesCommon nameDivergence from Human Lineage (MYA)Accession numberSequence length (aa)Sequence Identity to Human ProteinSequence Similarity to Human Protein
Gorilla gorilla gorillaGorilla9.06XP_004026030.162497%98%
Macaca mulattaRhesus monkey29.44XP_001097148.262393%95%
Ursus maritimusPolar bear96XP_008689049.162576%87%
Felis catusDomestic cat96XP_003990274.162574%86%
Camelus ferusBactrian camel96XP_006178380.161873%84%
Oryctolagus cuniculusEuropean rabbit90XP_002715603.162271%83%
Bison bison bisonAmerican bison96XP_010847739.162570%82%
Trichechus manatus latirostrisManatee105XP_004369192.162370%82%
Loxodonta africanaAfrican elephant105XP_003411181.162568%80%
Condylura cristataStar-nosed mole96XP_004679575.162767%80%
Eptesicus fuscusBig brown bat96XP_008137759.162166%80%
Myotis davidiiVesper bat96XP_006775977.161865%79%
Rattus norvegicusNorway rat90NP_001019478.163362%77%
Mus MusculusHouse mouse90NP_083214.263363%76%
Sorex araneusCommon shrew96XP_004603704.161255%73%
Chrysemys picta belliiPainted turtle312XP_005285573.162440%56%
Pogona vitticepsBearded dragon312XP_020650341.165135%54%
Apteryx australis mantelliBrown kiwi312XP_013800580.166435%54%
Struthio camelus australisSouthern Ostrich312XP_009685099.162834%51%

Clinical significance

LRRIQ3 is linked to a number of cancers. RNA-seq experiments have shown that LRRIQ3 is severely down-regulated (Log2-fold changes between -3.4 and -4.2) in a number of disease states, including pancreatic cancer, colorectal cancer, and breast cancer. [33] [34] [35]

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000162620 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000028182 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "LRRIQ3 Gene - GeneCards".
  6. 1 2 "AceView entry on LRRIQ3".
  7. 1 2 3 "LRRIQ3 leucine rich repeats and IQ motif containing 3 [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2018-04-30.
  8. "Lrriq3 protein abundance in PaxDb". pax-db.org. Retrieved 2018-04-30.
  9. "LRRIQ3 protein abundance in PaxDb". pax-db.org. Retrieved 2018-04-30.
  10. "GDS3834 / 3169". www.ncbi.nlm.nih.gov. Retrieved 2018-05-06.
  11. "ExPASy - Compute pI/Mw tool". web.expasy.org. Retrieved 2018-04-30.
  12. "Cell atlas - LRRIQ3 - The Human Protein Atlas". www.proteinatlas.org. Archived from the original on 2018-05-07. Retrieved 2018-04-30.
  13. 1 2 EMBL-EBI. "SAPS < Sequence Statistics < EMBL-EBI". www.ebi.ac.uk. Retrieved 2018-04-30.
  14. Kobe B, Deisenhofer J (October 1994). "The leucine-rich repeat: a versatile binding motif". Trends Biochem. Sci. 19 (10): 415–21. doi:10.1016/0968-0004(94)90090-6. ISSN   0968-0004. PMID   7817399.
  15. Enkhbayar P, Kamiya M, Osaki M, Matsumoto T, Matsushima N (February 2004). "Structural principles of leucine-rich repeat (LRR) proteins". Proteins. 54 (3): 394–403. doi:10.1002/prot.10605. ISSN   1097-0134. PMID   14747988. S2CID   19951452.
  16. Rhoads AR, Friedberg F (April 1997). "Sequence motifs for calmodulin recognition". FASEB J. 11 (5): 331–40. doi: 10.1096/fasebj.11.5.9141499 . ISSN   0892-6638. PMID   9141499. S2CID   1877645.
  17. Rost B (2001). "Review: protein secondary structure prediction continues to rise". J. Struct. Biol. 134 (2–3): 204–18. CiteSeerX   10.1.1.8.8169 . doi:10.1006/jsbi.2001.4336. ISSN   1047-8477. PMID   11551180.
  18. Ouali M, King RD (June 2000). "Cascaded multiple classifiers for secondary structure prediction". Protein Sci. 9 (6): 1162–76. doi:10.1110/ps.9.6.1162. ISSN   0961-8368. PMC   2144653 . PMID   10892809.
  19. Cuff JA, Barton GJ (August 2000). "Application of multiple sequence alignment profiles to improve protein secondary structure prediction". Proteins. 40 (3): 502–11. doi:10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q. ISSN   0887-3585. PMID   10861942. S2CID   855816.
  20. Jones DT (September 1999). "Protein secondary structure prediction based on position-specific scoring matrices". J. Mol. Biol. 292 (2): 195–202. doi:10.1006/jmbi.1999.3091. ISSN   0022-2836. PMID   10493868. S2CID   15506630.
  21. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (January 2015). "The I-TASSER Suite: protein structure and function prediction". Nat. Methods. 12 (1): 7–8. doi:10.1038/nmeth.3213. ISSN   1548-7091. PMC   4428668 . PMID   25549265.
  22. 1 2 Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Falquet L (July 2004). "MyHits: a new interactive resource for protein annotation and domain identification". Nucleic Acids Res. 32 (Web Server issue): W332–5. doi:10.1093/nar/gkh479. ISSN   0305-1048. PMC   441617 . PMID   15215405.
  23. de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (July 2006). "ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins". Nucleic Acids Res. 34 (Web Server issue): W362–5. doi:10.1093/nar/gkl124. ISSN   1362-4962. PMC   1538847 . PMID   16845026.
  24. Ren J, Wen L, Gao X, Jin C, Xue Y, Yao X (February 2009). "DOG 1.0: illustrator of protein domain structures". Cell Res. 19 (2): 271–3. doi: 10.1038/cr.2009.6 . ISSN   1001-0602. PMID   19153597.
  25. "Results - mentha: the interactome browser". mentha.uniroma2.it. Retrieved 2018-04-30.
  26. "LRRIQ3 - Leucine-rich repeat and IQ domain-containing protein 3 - Homo sapiens (Human) - LRRIQ3 gene & protein". www.uniprot.org. Retrieved 2018-04-30.
  27. Harder KW, Parsons LM, Armes J, Evans N, Kountouri N, Clark R, Quilici C, Grail D, Hodgson GS, Dunn AR, Hibbs ML (October 2001). "Gain- and loss-of-function Lyn mutant mice define a critical inhibitory role for Lyn in the myeloid lineage". Immunity. 15 (4): 603–15. doi: 10.1016/s1074-7613(01)00208-4 . ISSN   1074-7613. PMID   11672542.
  28. Downes GB, Gautam N (December 1999). "The G protein subunit gene families". Genomics. 62 (3): 544–52. doi:10.1006/geno.1999.5992. ISSN   0888-7543. PMID   10644457.
  29. Tu Y, Li F, Wu C (December 1998). "Nck-2, a novel Src homology2/3-containing adaptor protein that interacts with the LIM-only protein PINCH and components of growth factor receptor kinase-signaling pathways". Mol. Biol. Cell. 9 (12): 3367–82. doi:10.1091/mbc.9.12.3367. ISSN   1059-1524. PMC   25640 . PMID   9843575.
  30. Era T (July 2002). "Bcr-Abl is a "molecular switch" for the decision for growth and differentiation in hematopoietic stem cells". Int. J. Hematol. 76 (1): 35–43. doi:10.1007/BF02982716. PMID   12138893. S2CID   10269867.
  31. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (October 1990). "Basic local alignment search tool". J. Mol. Biol. 215 (3): 403–10. doi:10.1016/S0022-2836(05)80360-2. ISSN   0022-2836. PMID   2231712. S2CID   14441902.
  32. "TimeTree :: The Timescale of Life". www.timetree.org. Retrieved 2018-05-06.
  33. "Tissue expression of LRRIQ3 - Summary - The Human Protein Atlas". www.proteinatlas.org. Retrieved 2018-05-06.
  34. github.com/gxa/atlas/graphs/contributors, EMBL-EBI Expression Atlas development team. "Search results < Expression Atlas < EMBL-EBI". www.ebi.ac.uk. Retrieved 2018-04-30.{{cite web}}: |last= has generic name (help)
  35. github.com/gxa/atlas/graphs/contributors, EMBL-EBI Expression Atlas development team. "Experiment < Expression Atlas < EMBL-EBI". www.ebi.ac.uk. Retrieved 2018-05-06.{{cite web}}: |last= has generic name (help)