Land cover maps

Last updated

Land cover maps are tools that provide vital information about the Earth's land use and cover patterns. They aid policy development, urban planning, and forest and agricultural monitoring. [1] [2]

Contents

The systematic mapping of land cover patterns, including change detection, often follows two main approaches:

Image pre-processing is normally done through radiometric corrections, while image processing involves the application of either unsupervised or supervised classifications and vegetation indices quantification for land cover map production. Then the quality and reliability of land cover maps are typically evaluated through accuracy assessment, which involves comparing classified land cover data with reference information such as field surveys or high-resolution imagery.

Supervised classification

A supervised classification is a system of classification in which the user builds a series of randomly generated training datasets or spectral signatures representing different land-use and land-cover (LULC) classes and applies these datasets in machine learning models to predict and spatially classify LULC patterns and evaluate classification accuracies.

Algorithms

Several machine learning algorithms have been developed for supervised classification.

Unsupervised classification

Unsupervised classification is a system of classification in which single or groups of pixels are automatically classified by the software without the user applying signature files or training data. However, the user defines the number of classes for which the computer will automatically generate by grouping similar pixels into a single category using a clustering algorithm. This system of classification is mostly used in areas with no field observations or prior knowledge on the available land cover types.

Algorithms

Vegetation indices classification

Vegetation indices classification is a system in which two or more spectral bands are combined through defined statistical algorithms to reflect the spatial properties of a vegetation cover.

Most of these indices make use of the relationship between red and near-infrared (NIR) bands of satellite images to generate vegetation properties. Several vegetation indices have been developed; scientists apply these via remote sensing to effectively classify forest cover and land use patterns.

These spectral indices use two or more bands to accurately acquire surface reflectance of land features, thereby improving classification accuracy. [18] [19]

Vegetation indices

This index measures vegetation greenness, with values ranging between -1 and 1. High NDVI values represent dense vegetation cover, moderate NDVI values represent sparse vegetation cover, and low NDVI values correspond to non-vegetated areas (e.g., barren or bare lands). [22]
with usually default values of L = 0.5 and G = 2.5.
where both red and green range between 0 and 256.
where red ranges between 0 and 256.

See also

References

  1. Wessels, Konrad J.; Reyers, Belinda; van Jaarsveld, Albert S.; Rutherford, Mike C. (April 2003). "Identification of potential conflict areas between land transformation and biodiversity conservation in north-eastern South Africa" . Agriculture, Ecosystems & Environment . 95 (1): 157–178. Bibcode:2003AgEE...95..157W. doi:10.1016/s0167-8809(02)00102-0. ISSN   0167-8809.
  2. Gebhardt, Steffen; Wehrmann, Thilo; Ruiz, Miguel; Maeda, Pedro; Bishop, Jesse; Schramm, Matthias; Kopeinig, Rene; Cartus, Oliver; Kellndorfer, Josef; Ressl, Rainer; Santos, Lucio (2014-04-30). "MAD-MEX: Automatic Wall-to-Wall Land Cover Monitoring for the Mexican REDD-MRV Program Using All Landsat Data". Remote Sensing. 6 (5): 3923–3943. Bibcode:2014RemS....6.3923G. doi: 10.3390/rs6053923 . ISSN   2072-4292.
  3. Cracknell, Matthew J.; Reading, Anya M. (February 2014). "Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information". Computers & Geosciences . 63: 22–33. Bibcode:2014CG.....63...22C. doi: 10.1016/j.cageo.2013.10.008 . ISSN   0098-3004.
  4. 1 2 3 4 Press, Forex. "Analysis of Supervised Image Classification Method for Satellite Images".{{cite journal}}: Cite journal requires |journal= (help)
  5. 1 2 Khan, Umair; Minallah, Nasru; Junaid, Ahmad; Gul, Kashaf; Ahmad, Nasir (December 2015). "Parallelepiped and Mahalanobis Distance based Classification for forestry identification in Pakistan". 2015 International Conference on Emerging Technologies (ICET). IEEE. pp. 1–6. doi:10.1109/icet.2015.7389199. ISBN   978-1-5090-2013-3. S2CID   38668604.
  6. 1 2 Kruse, F. A.; Lefkoff, A. B.; Boardman, J. W.; Heidebrecht, K. B.; Shapiro, A. T.; Barloon, P. J.; Goetz, A. F. H. (1993). "The spectral image processing system (SIPS)-interactive visualization and analysis of imaging spectrometer data" . AIP Conference Proceedings. 283. AIP: 192–201. Bibcode:1993AIPC..283..192K. doi:10.1063/1.44433.
  7. 1 2 Maulik, Ujjwal; Bandyopadhyay, Sanghamitra (September 2000). "Genetic algorithm-based clustering technique" . Pattern Recognition. 33 (9): 1455–1465. Bibcode:2000PatRe..33.1455M. doi:10.1016/s0031-3203(99)00137-5. ISSN   0031-3203.
  8. 1 2 Sun, Weiwei; Ma, Jun; Yang, Gang; Du, Bo; Zhang, Liangpei (June 2017). "A Poisson nonnegative matrix factorization method with parameter subspace clustering constraint for endmember extraction in hyperspectral imagery" . ISPRS Journal of Photogrammetry and Remote Sensing . 128: 27–39. Bibcode:2017JPRS..128...27S. doi:10.1016/j.isprsjprs.2017.03.004. ISSN   0924-2716.
  9. 1 2 Sun, Weiwei; Du, Bo; Xiong, Shaolong (2017-05-01). "Quantifying Sub-Pixel Surface Water Coverage in Urban Environments Using Low-Albedo Fraction from Landsat Imagery". Remote Sensing. 9 (5): 428. Bibcode:2017RemS....9..428S. doi: 10.3390/rs9050428 . ISSN   2072-4292.
  10. Gülmezoğlu, M. Bilginer; Dzhafarov, Vakıf; Edizkan, Rifat; Barkana, Atalay (April 2007). "The common vector approach and its comparison with other subspace methods in case of sufficient data" . Computer Speech & Language . 21 (2): 266–281. doi:10.1016/j.csl.2006.06.002. ISSN   0885-2308.
  11. Laaksonen, Jorma; Oja, Erkki (1996), Malsburg, Christoph; Seelen, Werner; Vorbrüggen, Jan C.; Sendhoff, Bernhard (eds.), "Subspace dimension selection and averaged learning subspace method in handwritten digit classification" , Artificial Neural Networks — ICANN 96, vol. 1112, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 227–232, doi:10.1007/3-540-61510-5_41, ISBN   978-3-540-61510-1 , retrieved 2021-04-13
  12. 1 2 Mei Xiang; Chih-Cheng Hung; Minh Pham; Bor-Chen Kuo; Coleman, T. (2005). "A parallelepiped multispectral image classifier using genetic algorithms". Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS '05. Vol. 1. Seoul, Korea: IEEE. pp. 482–485. doi:10.1109/IGARSS.2005.1526216. ISBN   978-0-7803-9050-8. S2CID   37014767.
  13. 1 2 3 Beucher, A.; Møller, A.B.; Greve, M.H. (October 2019). "Artificial neural networks and decision tree classification for predicting soil drainage classes in Denmark" . Geoderma . 352: 351–359. Bibcode:2019Geode.352..351B. doi:10.1016/j.geoderma.2017.11.004. ISSN   0016-7061. S2CID   134063283.
  14. Silva, Leonardo Pereira e; Xavier, Ana Paula Campos; da Silva, Richarde Marques; Santos, Celso Augusto Guimarães (March 2020). "Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil". Global Ecology and Conservation . 21 e00811. Bibcode:2020GEcoC..2100811S. doi: 10.1016/j.gecco.2019.e00811 . ISSN   2351-9894.
  15. 1 2 Lo, C. P.; Choi, Jinmu (July 2004). "A hybrid approach to urban land use/cover mapping using Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images" . International Journal of Remote Sensing . 25 (14): 2687–2700. Bibcode:2004IJRS...25.2687L. doi:10.1080/01431160310001618428. ISSN   0143-1161. S2CID   129129271.
  16. 1 2 Mellor, Andrew; Haywood, Andrew; Stone, Christine; Jones, Simon (2013-06-04). "The Performance of Random Forests in an Operational Setting for Large Area Sclerophyll Forest Classification". Remote Sensing. 5 (6): 2838–2856. Bibcode:2013RemS....5.2838M. doi: 10.3390/rs5062838 . ISSN   2072-4292.
  17. Abbas, A.; Minalla, N.; Ahmad, N.; Abid, S.; Khan, M. K-means and ISODATA clustering algorithms for landcover classification using remote sensing. Sindh Univ. Res. J. SURJ (Sci. Ser.) 2016, 48, 315–318
  18. Tso, Brandt; Mather, Paul M. (2001). Classification Methods for Remotely Sensed Data. Abingdon, UK: Taylor & Francis. doi:10.4324/9780203303566. ISBN   978-0-203-35581-7.
  19. Shaban, M. A.; Dikshit, O. (January 2001). "Improvement of classification in urban areas by the use of textural features: The case study of Lucknow city, Uttar Pradesh" . International Journal of Remote Sensing . 22 (4): 565–593. Bibcode:2001IJRS...22..565D. doi:10.1080/01431160050505865. ISSN   0143-1161. S2CID   128572668.
  20. Pettorelli, Nathalie; Vik, Jon Olav; Mysterud, Atle; Gaillard, Jean-Michel; Tucker, Compton J.; Stenseth, Nils Chr. (September 2005). "Using the satellite-derived NDVI to assess ecological responses to environmental change" . Trends in Ecology & Evolution . 20 (9): 503–510. doi:10.1016/j.tree.2005.05.011. ISSN   0169-5347. PMID   16701427.
  21. Pettorelli, Nathalie; Gaillard, Jean-Michel; Mysterud, Atle; Duncan, Patrick; Chr. Stenseth, Nils; Delorme, Daniel; Van Laere, Guy; Toïgo, Carole; Klein, Francois (March 2006). "Using a proxy of plant productivity (NDVI) to find key periods for animal performance: the case of roe deer". Oikos. 112 (3): 565–572. Bibcode:2006Oikos.112..565P. doi: 10.1111/j.0030-1299.2006.14447.x . ISSN   0030-1299.
  22. Wegmann M, Leutner B, Dech S (2016) Remote sensing and GIS for ecologists: using open source software. Pelagic Publishing, Exeter, UK
  23. Jiang, Z.; Huete, A.; Didan, K.; Miura, T. (2008-10-15). "Development of a two-band enhanced vegetation index without a blue band" . Remote Sensing of Environment . 112 (10): 3833–3845. Bibcode:2008RSEnv.112.3833J. doi:10.1016/j.rse.2008.06.006. ISSN   0034-4257.
  24. Hui Qing Liu; Huete, A. (March 1995). "A feedback based modification of the NDVI to minimize canopy background and atmospheric noise" . IEEE Transactions on Geoscience and Remote Sensing. 33 (2). IEEE: 457–465. doi:10.1109/36.377946. ISSN   0196-2892. S2CID   28380065.
  25. Xue, Jinru; Su, Baofeng (2017-05-23). "Significant Remote Sensing Vegetation Indices: A Review of Developments and Applications". Journal of Sensors . 2017: 1–17. doi: 10.1155/2017/1353691 .
  26. Huete, A.R (August 1988). "A soil-adjusted vegetation index (SAVI)" . Remote Sensing of Environment . 25 (3): 295–309. Bibcode:1988RSEnv..25..295H. doi:10.1016/0034-4257(88)90106-x. ISSN   0034-4257.
  27. 1 2 3 Rikimaru, R.; Roy, P.S.; Miyatake, S. (2002). "Tropical forest cover density mapping". Tropical Ecology . 43: 39–47.
  28. 1 2 Baynes, Jack (January 2004). "Assessing forest canopy density in a highly variable landscape using Landsat data and FCD Mapper software" . Australian Forestry . 67 (4): 247–253. Bibcode:2004AuFor..67..247B. doi:10.1080/00049158.2004.10674942. ISSN   0004-9158. S2CID   84900545.
  29. Rikimaru, A., 1999. The concept of FCD mapping model and semi-expert system. FCD mapper user’s guide. International Tropical Timber Organization and Japan Overseas Forestry Consultants Association. Pp 90.
  30. Gao, Bo-cai (December 1996). "NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space" . Remote Sensing of Environment . 58 (3): 257–266. Bibcode:1996RSEnv..58..257G. doi:10.1016/s0034-4257(96)00067-3. ISSN   0034-4257.
  31. Zha, Y.; Gao, J.; Ni, S. (January 2003). "Use of normalized difference built-up index in automatically mapping urban areas from TM imagery" . International Journal of Remote Sensing . 24 (3): 583–594. Bibcode:2003IJRS...24..583Z. doi:10.1080/01431160304987. ISSN   0143-1161. S2CID   129599221.