Liquid-crystal polymer

Last updated
Solid LCP
Specific Gravity 1.38 to 1.95
Elasticity modulus (E)8530 to 17200 M Pa
Tensile strengtht)52.8 to 185 MPa
Tensile Elongation (%)0.26 to 6.2
Notched Izod Impact21.0 to 82.5 k J/m 2

Liquid crystal polymers (LCPs) are polymers with the property of liquid crystal, usually containing aromatic rings as mesogens. Despite uncrosslinked LCPs, polymeric materials like liquid crystal elastomers (LCEs) [1] and liquid crystal networks (LCNs) can exhibit liquid crystallinity as well. They are both crosslinked LCPs but have different cross link density. [2] They are widely used in the digital display market. [3] In addition, LCPs have unique properties like thermal actuation, anisotropic swelling, and soft elasticity. Therefore, they can be good actuators and sensors. [4] One of the most famous and classical applications for LCPs is Kevlar, a strong but light fiber with wide applications, notably bulletproof vests.   

Contents

Background

Molecular structure of Kevlar Kevlar chemical structure.png
Molecular structure of Kevlar
Molecular structure of the LCP Vectran Formula Liquid-Crystal-Polymer.svg
Molecular structure of the LCP Vectran

Liquid crystallinity in polymers may occur either by dissolving a polymer in a solvent (lyotropic liquid-crystal polymers) or by heating a polymer above its glass or melting transition point (thermotropic liquid-crystal polymers). [6] Liquid-crystal polymers are present in melted/liquid or solid form. [7] In solid form, the main example of lyotropic LCPs is the commercial aramid known as Kevlar. The chemical structure of this aramid consists of linearly substituted aromatic rings linked by amide groups. In a similar way, several series of thermotropic LCPs have been commercially produced by several companies.

A high number of LCPs, produced in the 1980s, displayed order in the melt phase analogous to that exhibited by nonpolymeric liquid crystals. Processing of LCPs from liquid-crystal phases (or mesophases) gives rise to fibers and injected materials having high mechanical properties as a consequence of the self-reinforcing properties derived from the macromolecular orientation in the mesophase.

LCPs can be melt-processed on conventional equipment at high speeds with excellent replication of mold details. The high ease of forming of LCPs is an important competitive advantage against other plastics, as it offsets high raw material cost. [8]

Polar and bowlic LCPs, which have unique properties and potential applications[ clarification needed ], have not been widely produced for industrial purposes. [9]

Mesophases

Same as the small molecular liquid crystal, liquid crystal polymers also have different mesophases. The mesogen cores of the polymers will aggregate into different mesophases: nematics, cholesterics, smectics and compounds with highly polar end groups. [10] More information about the mesophases can be found on liquid crystal page.

Classification

Structure of LCPs LCP Structure.jpg
Structure of LCPs

LCPs are categorized by the location of liquid crystal cores. Due to the creation and research of different classes of LCPs, different prefixes are used to help the classification of LCPs. [10] Main chain liquid crystal polymers (MCLCPs) have liquid crystal cores in the main chain. By contrast, side chain liquid crystal polymers (SCLCPs) have pendant side chains containing the liquid crystal cores. [10]

Main chain LCP

Main chain LCPs have rigid, rod-like mesogens in the polymer backbones, which indirectly leads to the high melting temperature of this kind of LCPs. To make this kind of polymer easy to process, different methods are applied to lower the transition temperature: introducing flexible sequences, introducing bends or kinks, or adding substituent groups to the aromatic mesogens.

Side Chain LCP

In side-chain LCPs, the mesogens are in the polymer side chains. [11] The mesogens usually are linked to the backbones through flexible spacers, although for a few LCPs, the side chains directly link to the backbones. If the mesogens are directly linked to the backbones, the coil-like conformation of the backbones will impede the mesogens from forming an orientational structure. Conversely, by introducing flexible spacers between the backbones and the mesogens, the ordering of mesogens can be decoupled from the conformation of the backbones.

Mechanism

The mechanism for lyotropic systems (L means liquid, LC means liquid crystal, Vp means the volume fraction of the polymer, T means temperature.) Lyotropic.jpg
The mechanism for lyotropic systems (L means liquid, LC means liquid crystal, Vp means the volume fraction of the polymer, T means temperature.)

Mesogens in LCPs can self-organize to form liquid crystal regions in different conditions. LCPs can be roughly divided into two subcategories based on the mechanism of aggregation and ordering, but the distinction is not rigidly defined. LCPs can be transformed into liquid crystals with more than one method. [10]

Lyotropic systems

Lyotropic main chain LCPs have rigid mesogen cores (such as aromatic rings) in the backbones. [12] This type of LCPs forms liquid crystals due to their rigid chain conformation but not only the aggregation of mesogen cores. Because of the rigid structure, strong solvent is needed to dissolve the lyotropic main chain polymers. When the concentration of the polymers reaches critical concentration, the mesophases begin to form and the viscosity of the polymer solution begins to decrease. Lyotropic main chain LCPs have been mainly used to generate high-strength fibers such as Kevlar.

Side chain LCPs usually consist of both hydrophobic and hydrophilic segments. Usually, the side chain ends are hydrophilic. When they are dissolved in water, micelles will form due to hydrophobic force. If the volume fraction of the polymers exceeds the critical volume fraction, the micellar segregates will be packed to form a liquid crystal structure. As the concentration varies above the critical volume fraction, the liquid crystal generated may be packed in different structures. Temperature, the stiffness of the polymers, and the molecular weight of the polymers can affect the liquid crystal transformation.

Lyotropic side chain LCPs such as alkyl polyoxyethylene surfactants attached to polysiloxane polymers may be used in personal care products like liquid soap.

Thermotropic systems

The study of thermotropic LCPs was catalyzed by the success of lyotropic LCPs. [13] Thermotropic LCPs can only be processed when the melting temperature is far below the decomposition temperature. When above the melting temperature but below the clearing point, the thermotropic LCPs will form liquid crystals. Above the clearing point, the melt will be isotropic and clear again.

Frozen liquid crystals can be obtained by quenching liquid crystal polymers below the glass transition temperature. Copolymerization can be used to adjust the melting temperature and mesophase temperature.

Liquid crystal elastomers (LCEs)

Finkelmann first proposed LCEs in 1981. LCEs attracted attention from researchers and industry. LCEs can be synthesized both from polymeric precursors and from monomers. LCEs can respond to heat, light, and magnetic fields. [2] Nanomaterials can be introduced into LCE matrices (LCE-based composites) to provide different properties and tailor LCEs' ability to respond to different stimuli. [4]

Applications

LCEs have many applications. For example, LCE films can be used as optical retarders due to their anisotropic structure. Because they can control the polarization state of transmitted light, they are commonly used in 3D glasses, patterned retarders for transflective displays, and flat panel LC displays. Modifying LCE with azobenzene, allows it to show light response properties. It can be applied for controlled wettability, autonomous lenses, and haptic surfaces. [3] Besides the display application, research has focused on other interesting properties such as its special thermally and photogenerated macroscale mechanical responses, which means they can be good actuators. [2]

LCEs are used to make actuators and artificial muscles for robotics. They have been studied for use as lightweight energy absorbers, with potential applications in helmets, body armor, vehicle bumpers, using multi-layered, tilted beams of LCE, sandwiched between stiff supporting structures. [14]

Synthesis

Polymeric precursors

LCEs synthesized from the polymeric precursors can be divided into two subcategories: [4]

Poly(hydrosiloxane): A two-step crosslinking technique is applied to derive LCEs from poly(hydrosiloxane). Poly(dydrosiloxane) is mixed with a monovinyl-functionalized liquid crystalline monomer, a multifunctional vinyl crosslinker, and catalyst. This mixture is used to generate a weakly crosslinked gel, in which the monomers are linked to the poly(dydrosiloxane) backbones. During the first crosslinking step or shortly after that, orientation is introduced into the mesogen cores of the gel with mechanical alignment methods. After that, the gel is dehydrated and the crosslinking reaction is completed. Therefore, the orientation is kept in the elastomer by crosslinking. In this way, highly ordered side chain LCEs can be produced, which are also called single-crystal or monodomain LCEs.

LCPs: With LCPs as precursors, a similar two-step method can be applied. Aligned LCPs mixed with multifunctional crosslinkers directly generate LCEs. The mixture is first heated to isotopic.[ clarification needed ] Fibers are drawn from the mixture and then crosslinked, thus the orientation can be trapped in the LCE. However, it is limited by the difficulty of processing caused by the high viscosity of the starting material.

Low molar mass monomers

Liquid crystal low molar mass monomers are mixed with crosslinkers and catalysts. The monomers can be aligned and then polymerized to keep the orientation. One advantage of this method is that the low molar mass monomers can be aligned by not only mechanical alignment, but also diamagnetic, dielectric, surface alignment. For example, thiol-ene radical step-growth polymerization and Michael addition produce well-ordered LCEs. [15] This is also a good way to synthesize moderately to densely crosslinked glassy LCNs.

The main difference between LCEs and LCNs is the cross link density. LCNs are primarily synthesized from (meth)acrylate-based multifunctional monomers while LCEs usually come from crosslinked polysiloxanes. [16]

Properties

A unique class of partially crystalline aromatic polyesters based on p-hydroxybenzoic acid and related monomers, liquid-crystal polymers are capable of forming regions of highly ordered structure while in the liquid phase. However, the degree of order is somewhat less than that of a regular solid crystal. Typically, LCPs have a high mechanical strength at high temperatures, extreme chemical resistance, inherent flame retardancy, and good weatherability. Liquid-crystal polymers come in a variety of forms from sinterable high temperature to injection moldable compounds. LCPs can be welded, though the lines created by welding are a weak point in the resulting product. LCPs have a high Z-axis coefficient of thermal expansion.

LCPs are exceptionally inert. They resist stress cracking in the presence of most chemicals at elevated temperatures, including aromatic or halogenated hydrocarbons, strong acids, bases, ketones, and other aggressive industrial substances. Hydrolytic stability in boiling water is excellent. Environments that deteriorate the polymers are high-temperature steam, concentrated sulfuric acid, and boiling caustic materials.

Polar and bowlic LCPs are ferroelectrics, with reaction time order-of-magnitudes smaller than that in conventional LCs and could be used to make ultrafast switches. Bowlic columnar polymers possess long, hollow tubes; with metal or transition metal atoms added into the tube, they could potentially form ultrahigh-Tc superconductors. [17]

Uses

Because of their various properties, LCPs are useful for electrical [18] and mechanical parts, food containers, and any other applications requiring chemical inertness and high strength. LCP is particularly good for microwave frequency electronics due to low relative dielectric constants, low dissipation factors, and commercial availability of laminates. Packaging microelectromechanical systems (MEMS) is another area that LCP has recently gained more attention. The superior properties of LCPs make them especially suitable for automotive ignition system components, heater plug connectors, lamp sockets, transmission system components, pump components, coil forms and sunlight sensors and sensors for car safety belts. LCPs are also well-suited for computer fans, where their high tensile strength and rigidity enable tighter design tolerances, higher performance, and less noise, albeit at a significantly higher cost. [19] [20]

Trade names

LCP is sold by manufacturers under a variety of trade names. These include:

Related Research Articles

<span class="mw-page-title-main">Liquid crystal</span> State of matter with properties of both conventional liquids and crystals

Liquid crystal (LC) is a state of matter whose properties are between those of conventional liquids and those of solid crystals. For example, a liquid crystal can flow like a liquid, but its molecules may be oriented in a common direction as in solid. There are many types of LC phases, which can be distinguished by their optical properties. The contrasting textures arise due to molecules within one area of material ("domain") being oriented in the same direction but different areas having different orientations. An LC material may not always be in an LC state of matter.

<span class="mw-page-title-main">Polymer</span> Substance composed of macromolecules with repeating structural units

A polymer (;) is a substance or material consisting of very large molecules called macromolecules, composed of many repeating subunits. Due to their broad spectrum of properties, both synthetic and natural polymers play essential and ubiquitous roles in everyday life. Polymers range from familiar synthetic plastics such as polystyrene to natural biopolymers such as DNA and proteins that are fundamental to biological structure and function. Polymers, both natural and synthetic, are created via polymerization of many small molecules, known as monomers. Their consequently large molecular mass, relative to small molecule compounds, produces unique physical properties including toughness, high elasticity, viscoelasticity, and a tendency to form amorphous and semicrystalline structures rather than crystals.

<span class="mw-page-title-main">Polyurethane</span> Polymer composed of a chain of organic units joined by carbamate (urethane) links

Polyurethane refers to a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane is produced from a wide range of starting materials. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in 2016.

<span class="mw-page-title-main">Polyethylene</span> Most common thermoplastic polymer

Polyethylene or polythene (abbreviated PE; IUPAC name polyethene or poly(methylene)) is the most commonly produced plastic. It is a polymer, primarily used for packaging (plastic bags, plastic films, geomembranes and containers including bottles, etc.). As of 2017, over 100 million tonnes of polyethylene resins are being produced annually, accounting for 34% of the total plastics market.

<span class="mw-page-title-main">Thermoplastic</span> Plastic that softens with heat and hardens on cooling

A thermoplastic, or thermosoftening plastic, is any plastic polymer material that becomes pliable or moldable at a certain elevated temperature and solidifies upon cooling.

<span class="mw-page-title-main">Thermosetting polymer</span> Polymer obtained by irreversibly hardening (curing) a resin

In materials science, a thermosetting polymer, often called a thermoset, is a polymer that is obtained by irreversibly hardening ("curing") a soft solid or viscous liquid prepolymer (resin). Curing is induced by heat or suitable radiation and may be promoted by high pressure or mixing with a catalyst. Heat is not necessarily applied externally, and is often generated by the reaction of the resin with a curing agent. Curing results in chemical reactions that create extensive cross-linking between polymer chains to produce an infusible and insoluble polymer network.

The columnar phase is a class of mesophases in which molecules assemble into cylindrical structures to act as mesogens. Originally, these kinds of liquid crystals were called discotic liquid crystals or bowlic liquid crystals because the columnar structures are composed of flat-shaped discotic or bowl-shaped molecules stacked one-dimensionally. Since recent findings provide a number of columnar liquid crystals consisting of non-discoid mesogens, it is more common now to classify this state of matter and compounds with these properties as columnar liquid crystals.

A mesogen is a compound that displays liquid crystal properties. Mesogens can be described as disordered solids or ordered liquids because they arise from a unique state of matter that exhibits both solid- and liquid-like properties called the liquid crystalline state. This liquid crystalline state (LC) is called the mesophase and occurs between the crystalline solid (Cr) state and the isotropic liquid (Iso) state at distinct temperature ranges.

A biaxial nematic is a spatially homogeneous liquid crystal with three distinct optical axes. This is to be contrasted to a simple nematic, which has a single preferred axis, around which the system is rotationally symmetric. The symmetry group of a biaxial nematic is i.e. that of a rectangular right parallelepiped, having 3 orthogonal axes and three orthogonal mirror planes. In a frame co-aligned with optical axes the second rank order parameter tensor of a biaxial nematic has the form

<span class="mw-page-title-main">Electroactive polymer</span>

An electroactive polymer (EAP) is a polymer that exhibits a change in size or shape when stimulated by an electric field. The most common applications of this type of material are in actuators and sensors. A typical characteristic property of an EAP is that they will undergo a large amount of deformation while sustaining large forces.

<span class="mw-page-title-main">EPDM rubber</span> Type of synthetic rubber

EPDM rubber is a type of synthetic rubber that is used in many applications. Dienes used in the manufacture of EPDM rubbers are ethylidene norbornene (ENB), dicyclopentadiene (DCPD), and vinyl norbornene (VNB). 4-8% of these monomers are typically used.

<span class="mw-page-title-main">Polyester</span> Category of polymers, in which the monomers are joined together by ester links

Polyester is a category of polymers that contain the ester functional group in every repeat unit of their main chain. As a specific material, it most commonly refers to a type called polyethylene terephthalate (PET). Polyesters include naturally occurring chemicals, such as in plants and insects, as well as synthetics such as polybutyrate. Natural polyesters and a few synthetic ones are biodegradable, but most synthetic polyesters are not. Synthetic polyesters are used extensively in clothing.

<span class="mw-page-title-main">Lyotropic liquid crystal</span>

Lyotropic liquid crystals result when fat-loving and water-loving chemical compounds known as amphiphiles dissolve into a solution that behaves both like a liquid and a solid crystal. This liquid crystalline mesophase includes everyday mixtures like soap and water.

Discotic liquid crystals are mesophases formed from disc-shaped molecules known as "discotic mesogens". These phases are often also referred to as columnar phases. Discotic mesogens are typically composed of an aromatic core surrounded by flexible alkyl chains. The aromatic cores allow charge transfer in the stacking direction through the π conjugate systems. The charge transfer allows the discotic liquid crystals to be electrically semiconductive along the stacking direction. Applications have been focusing on using these systems in photovoltaic devices, organic light emitting diodes (OLED), and molecular wires. Discotics have also been suggested for use in compensation films, for LCD displays.

<span class="mw-page-title-main">Ferroelectric polymer</span>

Ferroelectric polymers are a group of crystalline polar polymers that are also ferroelectric, meaning that they maintain a permanent electric polarization that can be reversed, or switched, in an external electric field.

<span class="mw-page-title-main">Polyfluorene</span> Chemical compound

Polyfluorene is a polymer with formula (C13H8)n, consisting of fluorene units linked in a linear chain — specifically, at carbon atoms 2 and 7 in the standard fluorene numbering. It can also be described as a chain of benzene rings linked in para positions with an extra methylene bridge connecting every pair of rings.

<span class="mw-page-title-main">High-performance plastics</span> Plastics that meet higher requirements than engineering plastics

High-performance plastics are plastics that meet higher requirements than standard or engineering plastics. They are more expensive and used in smaller amounts.


Carbon fiber is often time produced using two main methods: through the use of Polyacrylonitrile (PAN) and from pitch. Pitch is a viscoelastic material that is composed of aromatic hydrocarbons. Pitch is produced via the distillation of carbon-based materials, such as plants, crude oil, and coal. Pitch is isotropic, but can be made anisotropic through the use of heat treatments. However, the most important in carbon fiber production is mesophase pitch due to the ability to melt spin anisotropic mesophase pitch without filament breakage.

<span class="mw-page-title-main">Cardo polymer</span>

Cardo polymers are a sub group of polymers where ring structures are pendent to the polymer backbone. The backbone carbons bonded to the pendent ring structures are quaternary centers. As such, the cyclic side group lies perpendicular to the plane of the extended polymer chain. These side rings are bulky structures which sterically hinder rotation of the backbone bonds; they also disrupt chain packing and thus create greater free volume than found in conventional polymer structures. The rotational restrictions placed on the polymer backbone increase the value of the characteristic ratio, leading to what is referred to as a "rigid" or "stiff" backbone. The sterically driven large rotational potential produces a high glass transition temperature and the disrupted packing yields comparatively high values for gas and other small molecule solubilities in these polymers. Because of these physical effects, recent advances in membranes used for gas separation have used cardo polymers.

Liquid crystal elastomers (LCEs) are slightly crosslinked liquid crystalline polymer networks. These materials combine the entropy elasticity of an elastomer with the self-organization of the liquid crystalline phase. In liquid crystalline elastomers, the mesogens can either be part of the polymer chain or are attached via an alkyl spacer.

References

  1. Carroll, Gregory T.; Lee, Kyung Min; McConney, Michael E.; Hall, Harris J. (2023). "Optical control of alignment and patterning in an azobenzene liquid crystal photoresist". Journal of Materials Chemistry C. 11 (6): 2177–2185. doi:10.1039/D2TC04869H. ISSN   2050-7526. S2CID   256151872.
  2. 1 2 3 White, Timothy J.; Broer, Dirk J. (November 2015). "Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers". Nature Materials. 14 (11): 1087–1098. Bibcode:2015NatMa..14.1087W. doi:10.1038/nmat4433. ISSN   1476-4660. PMID   26490216.
  3. 1 2 Liu, Danqing; Broer, Dirk J. (2014-04-22). "Liquid Crystal Polymer Networks: Preparation, Properties, and Applications of Films with Patterned Molecular Alignment". Langmuir. 30 (45): 13499–13509. doi:10.1021/la500454d. ISSN   0743-7463. PMID   24707811. S2CID   10109504.
  4. 1 2 3 Kularatne, Ruvini S.; Kim, Hyun; Boothby, Jennifer M.; Ware, Taylor H. (2017). "Liquid crystal elastomer actuators: Synthesis, alignment, and applications". Journal of Polymer Science Part B: Polymer Physics. 55 (5): 395–411. Bibcode:2017JPoSB..55..395K. doi: 10.1002/polb.24287 . ISSN   1099-0488.
  5. "Vectran molecular structure". Archived from the original on 2012-06-05. Retrieved 2012-11-22.
  6. Shibaev, Valery P.; Lam, Lui, eds. (1994). Liquid Crystalline and Mesomorphic Polymers. New York: Springer.
  7. Callister (2007): "Materials Science and Engineering - An Introduction," 557-558.
  8. Charles A. Harper, ed., Modern Plastics Handbook, ISBN   0-07-026714-6, 2000.
  9. Lam, Lui (1988). "Bowlic and polar liquid crystal polymers". Mol. Cryst. Liq. Cryst. 155, 531.
  10. 1 2 3 4 Collyer, A. A (1992). Liquid crystal polymers: from structures to applications. London; New York: Elsevier Applied Science. ISBN   978-1-85166-797-0. OCLC   25409693.
  11. Ganicz, Tomasz; Stańczyk, Włodzimierz (March 2009). "Side-chain Liquid Crystal Polymers (SCLCP): Methods and Materials. An Overview". Materials. 2 (1): 95–128. Bibcode:2009Mate....2...95G. doi: 10.3390/ma2010095 . PMC   5445690 .
  12. Noël, Claudine; Navard, Patrick (1991-01-01). "Liquid crystal polymers". Progress in Polymer Science. 16 (1): 55–110. doi:10.1016/0079-6700(91)90007-8. ISSN   0079-6700.
  13. Shibaev, Valery P.; Platé, Nicolai A. (1984), "Thermotropic liquid-crystalline polymers with mesogenic side groups", Liquid Crystal Polymers II/III, Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 173–252, Bibcode:1984lcp2.book..173S, doi:10.1007/3-540-12994-4_4, ISBN   978-3-540-12994-3 , retrieved 2021-05-08
  14. Irving, Michael (2022-03-11). "New shock-absorbing material as strong as metal but light as foam". New Atlas. Retrieved 2022-03-11.
  15. Ware, Taylor H.; Biggins, John S.; Shick, Andreas F.; Warner, Mark; White, Timothy J. (2016-02-23). "Localized soft elasticity in liquid crystal elastomers". Nature Communications. 7 (1): 10781. Bibcode:2016NatCo...710781W. doi:10.1038/ncomms10781. ISSN   2041-1723. PMC   4766422 . PMID   26902873.
  16. Broer, Dirk; Crawford, Gregory P; Zumer, Slobodan, eds. (2011-01-24). Cross-Linked Liquid Crystalline Systems : From Rigid Polymer Networks to Elastomers. CRC Press. doi:10.1201/b10525. ISBN   978-0-429-14395-3. Provides information about the synthesis, properties and applications of LCNs and LCEs can be found in this book published in 2011.
  17. See [2],[5].
  18. FCI (2000): "Metral Signal Header 1 Mod, 4 Row Press-Fit", , 8 (note 2)
  19. Noctua. "Sterrox® liquid-crystal polymer (LCP)" . Retrieved 25 April 2020.
  20. Fenlon, Wes (5 June 2018). "Noctua spent four and a half years designing its quietest, strongest fan yet". PC Gamer . Retrieved 25 April 2020.