Lon protease family

Last updated
ATP-dependent protease La (LON) domain
PDB 2ane EBI.jpg
crystal structure of n-terminal domain of e.coli lon protease
Identifiers
SymbolLON
Pfam PF02190
Pfam clan CL0178
InterPro IPR003111
SMART LON
MEROPS S16
SCOP2 1zbo / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary
Lon protease (S16) C-terminal proteolytic domain
Identifiers
SymbolLON
Pfam PF05362
Pfam clan CL0329
InterPro IPR008269
MEROPS S16
SCOP2 1rr9 / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In molecular biology, the Lon protease family is a family of enzymes that break peptide bonds in proteins resulting in smaller peptides or amino acids. [1] They are found in archaea, bacteria and eukaryotes. Lon proteases are ATP-dependent serine peptidases belonging to the MEROPS peptidase family S16 (Lon protease family, clan SJ). In the eukaryotes the majority of the Lon proteases are located in the mitochondrial matrix. [2] [3] In yeast, the Lon protease PIM1 is located in the mitochondrial matrix. It is required for mitochondrial function, it is constitutively expressed but is increased after thermal stress, suggesting that PIM1 may play a role in the heat shock response. [4] Lon proteases have two specific subfamilies: LonA and LonB, differentiated by the number of AAA+ domains found in the protein. [5] [6]

Contents

See also

Related Research Articles

<span class="mw-page-title-main">Proteolysis</span> Breakdown of proteins into smaller polypeptides or amino acids

Proteolysis is the breakdown of proteins into smaller polypeptides or amino acids. Uncatalysed, the hydrolysis of peptide bonds is extremely slow, taking hundreds of years. Proteolysis is typically catalysed by cellular enzymes called proteases, but may also occur by intra-molecular digestion.

<span class="mw-page-title-main">Protease</span> Enzyme that cleaves other proteins into smaller peptides

A protease is an enzyme that catalyzes proteolysis, breaking down proteins into smaller polypeptides or single amino acids, and spurring the formation of new protein products. They do this by cleaving the peptide bonds within proteins by hydrolysis, a reaction where water breaks bonds. Proteases are involved in many biological functions, including digestion of ingested proteins, protein catabolism, and cell signaling.

In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases. Many naturally occurring protease inhibitors are proteins.

<span class="mw-page-title-main">Catalytic triad</span> Set of three coordinated amino acids

A catalytic triad is a set of three coordinated amino acids that can be found in the active site of some enzymes. Catalytic triads are most commonly found in hydrolase and transferase enzymes. An acid-base-nucleophile triad is a common motif for generating a nucleophilic residue for covalent catalysis. The residues form a charge-relay network to polarise and activate the nucleophile, which attacks the substrate, forming a covalent intermediate which is then hydrolysed to release the product and regenerate free enzyme. The nucleophile is most commonly a serine or cysteine amino acid, but occasionally threonine or even selenocysteine. The 3D structure of the enzyme brings together the triad residues in a precise orientation, even though they may be far apart in the sequence.

<span class="mw-page-title-main">Endopeptidase Clp</span>

Endopeptidase Clp (EC 3.4.21.92, endopeptidase Ti, caseinolytic protease, protease Ti, ATP-dependent Clp protease, ClpP, Clp protease). This enzyme catalyses the following chemical reaction

In molecular biology, the Signal Peptide Peptidase (SPP) is a type of protein that specifically cleaves parts of other proteins. It is an intramembrane aspartyl protease with the conserved active site motifs 'YD' and 'GxGD' in adjacent transmembrane domains (TMDs). Its sequences is highly conserved in different vertebrate species. SPP cleaves remnant signal peptides left behind in membrane by the action of signal peptidase and also plays key roles in immune surveillance and the maturation of certain viral proteins.

<span class="mw-page-title-main">HslVU</span> Class of bacterial heat shock proteins

The heat shock proteins HslV and HslU are expressed in many bacteria such as E. coli in response to cell stress. The hslV protein is a protease and the hslU protein is an ATPase; the two form a symmetric assembly of four stacked rings, consisting of an hslV dodecamer bound to an hslU hexamer, with a central pore in which the protease and ATPase active sites reside. The hslV protein degrades unneeded or damaged proteins only when in complex with the hslU protein in the ATP-bound state. HslV is thought to resemble the hypothetical ancestor of the proteasome, a large protein complex specialized for regulated degradation of unneeded proteins in eukaryotes, many archaea, and a few bacteria. HslV bears high similarity to core subunits of proteasomes.

Kexin is a prohormone-processing protease, specifically a yeast serine peptidase, found in the budding yeast. It catalyzes the cleavage of -Lys-Arg- and -Arg-Arg- bonds to process yeast alpha-factor pheromone and killer toxin precursors. The human homolog is PCSK4. It is a family of subtilisin-like peptidases. Even though there are a few prokaryote kexin-like peptidases, all kexins are eukaryotes. The enzyme is encoded by the yeast gene KEX2, and usually referred to in the scientific community as Kex2p. It shares structural similarities with the bacterial protease subtilisin. The first mammalian homologue of this protein to be identified was furin. In the mammal, kexin-like peptidases function in creating and regulating many differing proproteins.

<span class="mw-page-title-main">LONP1</span> Human protein and coding gene

Lon protease homolog, mitochondrial is a protease, an enzyme that in humans is encoded by the LONP1 gene.

<span class="mw-page-title-main">PMPCB</span> Protein-coding gene in the species Homo sapiens

Mitochondrial-processing peptidase subunit beta is an enzyme that in humans is encoded by the PMPCB gene. This gene is a member of the peptidase M16 family and encodes a protein with a zinc-binding motif. This protein is located in the mitochondrial matrix and catalyzes the cleavage of the leader peptides of precursor proteins newly imported into the mitochondria, though it only functions as part of a heterodimeric complex.

<span class="mw-page-title-main">PMPCA</span> Protein-coding gene in the species Homo sapiens

Mitochondrial-processing peptidase subunit alpha is an enzyme that in humans is encoded by the PMPCA gene. This gene PMPCA encoded a protein that is a member of the peptidase M16 family. This protein is located in the mitochondrial matrix and catalyzes the cleavage of the leader peptides of precursor proteins newly imported into the mitochondria, though it only functions as part of a heterodimeric complex.

<span class="mw-page-title-main">RCE1</span> Protein-coding gene in the species Homo sapiens

CAAX prenyl protease 2 is an enzyme that in humans is encoded by the RCE1 gene.

<span class="mw-page-title-main">ATP-dependent Clp protease proteolytic subunit</span> Protein-coding gene in the species Homo sapiens

ATP-dependent Clp protease proteolytic subunit (ClpP) is an enzyme that in humans is encoded by the CLPP gene. This protein is an essential component to form the protein complex of Clp protease.

<span class="mw-page-title-main">Clp protease family</span> A protein-targeting ATP-dependent enzyme family.

In molecular biology, the CLP protease family is a family of serine peptidases belong to the MEROPS peptidase family S14. ClpP is an ATP-dependent protease that cleaves a number of proteins, such as casein and albumin. It exists as a heterodimer of ATP-binding regulatory A and catalytic P subunits, both of which are required for effective levels of protease activity in the presence of ATP, although the P subunit alone does possess some catalytic activity.

Mitochondrial processing peptidase is an enzyme complex found in mitochondria which cleaves signal sequences from mitochondrial proteins. In humans this complex is composed of two subunits encoded by the genes PMPCA, and PMPCB. The enzyme is also known as. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">ClpX</span> Mammalian protein found in Homo sapiens

ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial is an enzyme that in humans is encoded by the CLPX gene. This protein is a member of the family of AAA Proteins and is to form the protein complex of Clp protease.

<span class="mw-page-title-main">OMA1</span> Protein-coding gene in the species Homo sapiens

Metalloendopeptidase OMA1, mitochondrial is an enzyme that in humans is encoded by the OMA1 gene. OMA1 is a Zn2+-dependent metalloendopeptidase in the inner membrane of mitochondria. The OMA1 acronym was derived from overlapping proteolytic activity with m-AAA protease 1.

<span class="mw-page-title-main">Glutamic protease</span>

Glutamic proteases are a group of proteolytic enzymes containing a glutamic acid residue within the active site. This type of protease was first described in 2004 and became the sixth catalytic type of protease. Members of this group of protease had been previously assumed to be an aspartate protease, but structural determination showed it to belong to a novel protease family. The first structure of this group of protease was scytalidoglutamic peptidase, the active site of which contains a catalytic dyad, glutamic acid (E) and glutamine (Q), which give rise to the name eqolisin. This group of proteases are found primarily in pathogenic fungi affecting plant and human.

Asparagine peptide lyase are one of the seven groups in which proteases, also termed proteolytic enzymes, peptidases, or proteinases, are classified according to their catalytic residue. The catalytic mechanism of the asparagine peptide lyases involves an asparagine residue acting as nucleophile to perform a nucleophilic elimination reaction, rather than hydrolysis, to catalyse the breaking of a peptide bond.

Alfred Lewis Goldberg was an American cell biologist-biochemist and professor at Harvard University. His major discoveries have concerned the mechanisms and physiological importance of protein degradation in cells. Of wide impact have been his lab's demonstration that all cells contain a pathway for selectively eliminating misfolded proteins, his discoveries about the role of proteasomes in this process and of the enzyme systems catalyzing protein breakdown in bacteria, his elucidating the mechanisms for muscle atrophy and the role of proteasomes in antigen presentation to the immune system, and his introduction of proteasome inhibitors now widely used as research tools and in the treatment of blood cancers.

References

  1. "Proteolytic enzyme | Description, Types, & Functions | Britannica". www.britannica.com. Retrieved 2022-12-05.
  2. Wang N, Gottesman S, Willingham MC, Gottesman MM, Maurizi MR (December 1993). "A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease". Proc. Natl. Acad. Sci. U.S.A. 90 (23): 11247–51. Bibcode:1993PNAS...9011247W. doi: 10.1073/pnas.90.23.11247 . PMC   47959 . PMID   8248235.
  3. Barakat S, Pearce DA, Sherman F, Rapp WD (May 1998). "Maize contains a Lon protease gene that can partially complement a yeast pim1-deletion mutant". Plant Mol. Biol. 37 (1): 141–54. doi:10.1023/A:1005912831051. PMID   9620272. S2CID   94168.
  4. Van Dyck L, Pearce DA, Sherman F (January 1994). "PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae". J. Biol. Chem. 269 (1): 238–42. doi: 10.1016/S0021-9258(17)42340-4 . PMID   8276800.
  5. An, Young Jun; Na, Jung-Hyun; Kim, Myung-Il; Cha, Sun-Shin (2015-10-01). "Structural basis for the ATP-independent proteolytic activity of LonB proteases and reclassification of their AAA+ modules". Journal of Microbiology. 53 (10): 711–717. doi:10.1007/s12275-015-5417-5. ISSN   1976-3794. PMID   26428922. S2CID   14281538.
  6. Rotanova, Tatyana V.; Andrianova, Anna G.; Kudzhaev, Arsen M.; Li, Mi; Botos, Istvan; Wlodawer, Alexander; Gustchina, Alla (September 2019). "New insights into structural and functional relationships between LonA proteases and ClpB chaperones". FEBS Open Bio. 9 (9): 1536–1551. doi:10.1002/2211-5463.12691. ISSN   2211-5463. PMC   6722904 . PMID   31237118.
This article incorporates text from the public domain Pfam and InterPro: IPR003111