Lucilia thatuna | |
---|---|
Scientific classification | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Arthropoda |
Class: | Insecta |
Order: | Diptera |
Family: | Calliphoridae |
Genus: | Lucilia |
Species: | L. thatuna |
Binomial name | |
Lucilia thatuna Shannon, 1926 | |
Synonyms | |
|
Lucilia thatuna belongs to the family Calliphoridae, the species most commonly referred to as the blowflies, and the genus Lucilia. Along with several other species of Lucilia, L. thatuna is commonly referred to as a green bottle fly. L. thatuna is very scarce and not much is known about this particular fly. It has been noted to reside in mountainous regions of the northwestern United States.
The genus Lucilia was first identified in 1830 by Jean-Baptiste Robineau-Desvoidy, a French entomologist and physician. In 1926, American entomologist Julie Bockman identified the species Lucilia thatuna during his work with the U.S. Bureau of Entomology. The species was also referred to as Bufolucilia thatuna and Phaenicia thatuna until 1991 when Knut Rognes synonymized these genera names with Lucilia. This species can be identified through the Keys to the Genera and Species of Blowflies (Diptera: Calliphoridae) of America North of Mexico (Whitworth 2006).
Although other species in the genus Lucilia are called "green bottle flies," L. thatuna can be identified by a shiny, bluish thorax and abdomen (Whitworth 2006). The mature adult, also known as an imago, generally ranges from 4.5 to 10 mm in length (Byrd 2001). Size is strongly correlated with the availability of nutrient rich food and environmental conditions (Florin 2001).
Adult females tend to be slightly larger than males, with smaller eyes placed more laterally on the head and the ocellar triangle not surpassing the halfway point to the lunule. The narrow frons on the male distinguishes it from other common species such as Lucilia cuprina and Lucilia sericata . Other distinguishing characteristics include the presence of three postacrostichal setae and the first flaellomere broader in width than the parafacial at the level of the lunule (Whitworth 2006).
Once an adult female has fully developed eggs in her ovaries, she will follow the scent of decay to suitable carrion on which to deposit her eggs. It is theorized that females will feed on the protein secreted from the carrion before depositing a possible 200 eggs through her ovipositor onto carrion. Depending on temperature, the eggs will usually hatch within a day producing the first instar larvae. These larvae will feed continuously upon the decomposing carcass until they are large enough to molt and enter the second instar. This process is repeated again for the third and final instar after which, the larva leaves the corpse to pupate. During this time, L. thatuna actively rearranges its physical composition to emerge as an adult fly after approximately two weeks depending on temperature (Byrd 2001).
L. thatuna is not found in a wide variety of human habitats. Specimen collections have been few and sporadic over a ten-year period. Identification has only been documented in the United States, mainly in northwestern Idaho, Oregon, Montana, California, and Colorado. L. thatuna appears to have a local distribution in mountainous areas of elevation from 4,000 to 5,000 feet. Six specimens have been located on Mt. Moscow, two specimens on Lake Waha, three specimens in Latah County, and two specimens on Craig Mountain, Nez Perce County; all found in Idaho (Hall 1948).
As part of the family Calliphoridae L. thatuna is involved in myiasis, as most other blowflies are. Myiasis is the infestation of live or necrotic tissue on a vertebrate host by fly larvae (Stevens 2003). This disease is initiated by dipterous eggs being laid in natural body openings or exposed wounds (Stevens 2003). As can be imagined, the condition produces a variety of problems depending on the location of the larvae. L. thatuna is described as a facultative ectoparasite; it is able to live as a sacrophage or initiate myiasis. Myiasis caused by a facultative ectoparasite is semispecific (Stevens 2003). Semispecific is synonymous to facultative parasite. These flies do not utilize living organisms to lay their eggs. Rather, they will use dead organic matter; however, when a wound is present the flies will lay their eggs in it, causing myiasis.
The genus Lucilia is commonly used in maggot therapy. Maggot therapy is the process of using fly larvae to treat infected wounds; it is also known as Maggot Debridement Therapy. The maggots that are used are mass-produced and disinfected. They are placed into open wounds healing on their own. This type of therapy is effective because the maggots only eat the necrotic tissue, thus cleaning out the wound and promoting healing. The larvae used in therapy use secretions to increase efficacy of their healing properties. They usually produce positive results via three mechanisms of action: Debridement, disinfection, and stimulation of healing properties (The Role of Maggots 2009).
L. thatuna is of forensic importance because it belongs to the family Calliphoridae which are more commonly known as blowflies. The genus Lucilia is overwhelmingly the first to appear on carrion if left exposed to the elements such as in an outside environment or where the carrion is accessible to insects. Upon reaching the carrion, females will oviposit their eggs in moist openings such as the eyes, nose, mouth, and anus. The reason for this is because the maggots do not regularly burrow through skin and need a soft place to begin feeding. Given an ambient temperature, forensic entomologists can use degree day calculations to produce an accurate PMI, or post mortem interval. PMIs are sometimes referred to as 'time of colonization.' Lucillia thatuna is not as well known as some of the other species, but is comparable in life cycle and forensic importance to that of Lucilia cuprina.
Research from 1996 revolves around the evolutionary origin of the parasitic nature of genus Lucilia. This was analyzed using mitochondrial DNA and parsimony analyses by construction of phylogenetic trees. These tests were used to consider the relationships between the numerous species within the genus Lucilia and when each species developed a myiasis habit. The results show timelines of myiasis development within several of the Lucilia species (Stevens 1997).
A maggot is the larva of a fly ; it is applied in particular to the larvae of Brachycera flies, such as houseflies, cheese flies, and blowflies, rather than larvae of the Nematocera, such as mosquitoes and crane flies.
The Calliphoridae are a family of insects in the order Diptera, with almost 1,900 known species. The maggot larvae, often used as fishing bait, are known as gentles. The family is known to be polyphyletic, but much remains disputed regarding proper treatment of the constituent taxa, some of which are occasionally accorded family status.
Myiasis, also known as flystrike or fly strike, is the parasitic infestation of the body of a live animal by fly larvae (maggots) that grow inside the host while feeding on its tissue. Although flies are most commonly attracted to open wounds and urine- or feces-soaked fur, some species can create an infestation even on unbroken skin and have been known to use moist soil and non-myiatic flies as vector agents for their parasitic larvae.
The common green bottle fly is a blowfly found in most areas of the world and is the most well-known of the numerous green bottle fly species. Its body is 10–14 mm (0.39–0.55 in) in length – slightly larger than a house fly – and has brilliant, metallic, blue-green or golden coloration with black markings. It has short, sparse, black bristles (setae) and three cross-grooves on the thorax. The wings are clear with light brown veins, and the legs and antennae are black. The larvae of the fly may be used for maggot therapy, are commonly used in forensic entomology, and can be the cause of myiasis in livestock and pets. The common green bottle fly emerges in the spring for mating.
Cynomya mortuorum belongs to the order Diptera, sometimes referred to as "true flies". In English, the only common name occasionally used is "fly of the dead". It has a bluish-green appearance, similar to other Calliphoridae and is found in multiple geographic locations with a preference for colder regions. Belonging to the family Calliphoridae, it has been shown to have forensically relevant implications due to its appearance on carrion. Current research is being done to determine C. mortuorum's level of importance and usage within forensic entomology.
Calliphora vomitoria, known as the blue bottle fly, orange-bearded blue bottle, or bottlebee is a species of blow fly, a species in the family Calliphoridae. Calliphora vomitoria is the type species of the genus Calliphora. It is common throughout many continents including Europe, Americas, and Africa. They are fairly large flies, nearly twice the size of the housefly, with a metallic blue abdomen and long orange setae on the gena.
Cochliomyia is a genus in the family Calliphoridae, known as blowflies, in the order Diptera. Cochliomyia is commonly referred to as the New World screwworm flies, as distinct from Old World screwworm flies. Four species are in this genus: C. macellaria, C. hominivorax, C. aldrichi, and C. minima. C. hominivorax is known as the primary screwworm because its larvae produce myiasis and feed on living tissue. This feeding causes deep, pocket-like lesions in the skin, which can be very damaging to the animal host. C. macellaria is known as the secondary screwworm because its larvae produce myiasis, but feed only on necrotic tissue. Both C. hominivorax and C. macellaria thrive in warm, tropical areas.
Chrysomya rufifacies is a species belonging to the blow fly family, Calliphoridae, and is most significant in the field of forensic entomology due to its use in establishing or altering post mortem intervals. The common name for the species is the hairy maggot blow fly, and it belongs to the genus Chrysomya, which is commonly referred to as the Old World screwworms. This genus includes other species such as Chrysomya putoria and Chrysomya bezziana, which are agents of myiasis. C. rufifacies prefers very warm weather and has a relatively short lifecycle. It is widely distributed geographically and prefers to colonize large carcasses over small ones. The species commonly has a greenish metallic appearance and is important medically, economically, and forensically.
Lucilia illustris is a member of the fly family Calliphoridae, commonly known as a blow fly. Along with several other species, L. illustris is commonly referred to as a green bottle fly. Lucilia illustris is typically 6–9 mm in length and has a metallic blue-green thorax. The larvae develop in three instars, each with unique developmental properties. The adult fly typically will feed on flowers, but the females need some sort of carrion protein in order to breed and lay eggs.
Phormia regina, the black blow fly, belongs to the blow fly family Calliphoridae and was first described by Johann Wilhelm Meigen.
Entomological evidence is legal evidence in the form of insects or related artifacts and is a field of study in forensic entomology. Such evidence is used particularly in medicolegal and medicocriminal applications due to the consistency of insects and arthropods in detecting decomposition quickly. Insect evidence is customarily used to determine post-mortem interval (PMI) but can also be used as evidence of neglect or abuse. It can indicate how long a person was abused/neglected as well as provide important insights into the amount of bodily care given to the neglected or abused person.
Chrysomya villeneuvi, or hairy maggot, is a South East Asian fly species of forensic importance because the maggots of this species have been collected from human corpses.
The common toad fly, Lucilia silvarum, is a member of the fly family Calliphoridae. This fly was first discovered by Johann Wilhelm Meigen in 1826 and is found most notably in European and Western Countries.
Lucilia cuprina, formerly named Phaenicia cuprina, the Australian sheep blowfly is a blow fly in the family Calliphoridae. It causes the condition known as "sheep strike"'. The female fly locates a sheep with ideal conditions, such as an open wound or a build-up of faeces or urine in the wool, in which she lays her eggs. The emerging larvae cause large lesions on the sheep, which may prove to be fatal.
Cynomya cadaverina, also known as the shiny blue bottle fly, is a member of the family Calliphoridae, which includes blow flies as well as bottle flies. In recent years, this family has become a forensically important facet in many medicocriminal investigations in the growing field of forensic entomology. C. cadaverina is specifically important in determining a post-mortem interval, as well as other important factors.
Lucilia mexicana is a species of blow fly of the family Calliphoridae, one of many species known as a green bottle fly. Its habitat range extends from southwestern North America to Brazil. L. mexicana is typically 6–9 mm in length with metallic blue-green coloring. This species is very similar in appearance to L. coeruleiviridis, the primary difference being that L. mexicana has two or more complete rows of post-ocular setae. L. mexicana has the potential to be forensically important in the stored-products and medicocriminal fields, but more research is needed for the fly to be used as evidence in criminal investigations.
Calliphora livida is a member of the family Calliphoridae, the blow flies. This large family includes the genus Calliphora, the "blue bottle flies". This genus is important in the field of forensic entomology because of its value in post-mortem interval estimation.
Lucilia coeruleiviridis, formerly Phaenecia coeruleiviridis, is commonly known as a green bottle fly, because of its metallic blue-green thorax and abdomen. L. coeruleiviridis was first discovered by French entomologist Pierre-Justin-Marie Macquart in 1855. It belongs to the family Calliphoridae and is one of many forensically important Diptera, as it is often found on decaying substances. L. coeruleiviridis is one of the most ubiquitous blow fly species in the southeastern United States, particularly in the spring and fall months.
Protophormia terraenovae is commonly called northern blowfly, blue-bottle fly or blue-assed fly. It is distinguished by its deep blue coloration and large size and is an important species throughout the Northern Hemisphere. This fly is notable for its economic effect as a myiasis pest of livestock and its antibiotic benefits in maggot therapy. Also of interest is P. terraenovae’s importance in forensic investigations: because of their temperature-dependent development and their prominent presence on corpses, the larvae of this species are useful in minimum post-mortem interval (mPMI) determination.
Calliphora loewi is part of the family Calliphoridae, bottle flies and blowflies, and in the genus Calliphora, blue bottle flies. The genus can be deceiving since C. loewi is not blue. Though this species is rare, it can play an important part in forensic entomology, spreading disease, and decomposing carrion. The life cycle of C. loewi is similar to the life cycle of the genus Calliphora. Since this species is rare there has not been very much research done with this species.