Magelona dakini

Last updated

Magelona dakini
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Annelida
Clade: Pleistoannelida
Subclass: Sedentaria
Order: Spionida
Family: Magelonidae
Genus: Magelona
Species:
M. dakini
Binomial name
Magelona dakini
(Jones, 1978) [1]

Magelona dakini is a small, thin, shovel-nosed burrowing worm with limited mobility. [2] [3] Adults grow up to 70mm long. [3] Magelonids build meandering burrows, usually below the top 20mm of sediment, in medium to fine sands. [3] They occur across the mid-intertidal and subtidal zones to the continental slope. [3]

M. dakini is important to researchers because it can be used to gauge an ecosystem's health. Under normal conditions, this worm can be dispersed and wide spread in the marine soil. [4] However, when a ecosystem becomes polluted, M. dakini will start to die off and will only be found in non contaminated areas. [5] When the area is cleaned, M. dakini will repopulate. This species is not especially susceptible to metal loading, meaning, excess iron and lead does not affect it much.

In 2020, a paper described a new fossil from the Canglangpu formation of China was described. [6] Dannychaeta tucolus lived about 514 million years ago, putting it in the middle Cambrian. Known from multiple fossils, this species is morphologically very similar to M. dakini, meaning M. dakini features are very basal and has not changed much since the middle Cambrian. Similar to M. dakini, D. tucolus is also characterized by two spindles that are located next to its mouth and lived in shallow borrows on the sea floor as indicated by trace fossils and intact trace fossils with D. tucolus inside of them. D. tucolus considered the crown species of annelids, meaning all clades of annelids can trace their lineages to this species as well.

Related Research Articles

<span class="mw-page-title-main">Sipuncula</span> Phylum of invertebrates, peanut worms

The Sipuncula or Sipunculida is a class containing about 162 species of unsegmented marine annelid worms. The name Sipuncula is from the genus name Sipunculus, and comes from the Latin siphunculus meaning a "small tube".

<span class="mw-page-title-main">Echiura</span> Group of marine animals ("spoon worms")

The Echiura, or spoon worms, are a small group of marine animals. Once treated as a separate phylum, they are now considered to belong to Annelida. Annelids typically have their bodies divided into segments, but echiurans have secondarily lost their segmentation. The majority of echiurans live in burrows in soft sediment in shallow water, but some live in rock crevices or under boulders, and there are also deep sea forms. More than 230 species have been described. Spoon worms are cylindrical, soft-bodied animals usually possessing a non-retractable proboscis which can be rolled into a scoop-shape to feed. In some species the proboscis is ribbon-like, longer than the trunk and may have a forked tip. Spoon worms vary in size from less than a centimetre in length to more than a metre.

<span class="mw-page-title-main">Polychaete</span> Class of annelid worms

Polychaeta is a paraphyletic class of generally marine annelid worms, commonly called bristle worms or polychaetes. Each body segment has a pair of fleshy protrusions called parapodia that bear many bristles, called chaetae, which are made of chitin. More than 10,000 species are described in this class. Common representatives include the lugworm and the sandworm or clam worm Alitta.

<span class="mw-page-title-main">Estuary</span> Partially enclosed coastal body of brackish water

An estuary is a partially enclosed coastal body of brackish water with one or more rivers or streams flowing into it, and with a free connection to the open sea. Estuaries form a transition zone between river environments and maritime environments and are an example of an ecotone. Estuaries are subject both to marine influences such as tides, waves, and the influx of saline water, and to fluvial influences such as flows of freshwater and sediment. The mixing of seawater and freshwater provides high levels of nutrients both in the water column and in sediment, making estuaries among the most productive natural habitats in the world.

<span class="mw-page-title-main">Trace fossil</span> Geological record of biological activity

A trace fossil, also known as an ichnofossil, is a fossil record of biological activity by lifeforms but not the preserved remains of the organism itself. Trace fossils contrast with body fossils, which are the fossilized remains of parts of organisms' bodies, usually altered by later chemical activity or mineralization. The study of such trace fossils is ichnology and is the work of ichnologists.

<span class="mw-page-title-main">Bioturbation</span> Reworking of soils and sediments by organisms.

Bioturbation is defined as the reworking of soils and sediments by animals or plants. It includes burrowing, ingestion, and defecation of sediment grains. Bioturbating activities have a profound effect on the environment and are thought to be a primary driver of biodiversity. The formal study of bioturbation began in the 1800s by Charles Darwin experimenting in his garden. The disruption of aquatic sediments and terrestrial soils through bioturbating activities provides significant ecosystem services. These include the alteration of nutrients in aquatic sediment and overlying water, shelter to other species in the form of burrows in terrestrial and water ecosystems, and soil production on land.

<span class="mw-page-title-main">Mangrove forest</span> Productive wetlands that occur in coastal intertidal zones

Mangrove forests, also called mangrove swamps, mangrove thickets or mangals, are productive wetlands that occur in coastal intertidal zones. Mangrove forests grow mainly at tropical and subtropical latitudes because mangroves cannot withstand freezing temperatures. There are about 80 different species of mangroves, all of which grow in areas with low-oxygen soil, where slow-moving waters allow fine sediments to accumulate.

<span class="mw-page-title-main">Eunicidae</span> Family of annelids

Eunicidae is a family of marine polychaetes. The family comprises marine annelids distributed in diverse benthic habitats across Oceania, Europe, South America, North America, Asia and Africa. The Eunicid anatomy typically consists of a pair of appendages near the mouth (mandibles) and complex sets of muscular structures on the head (maxillae) in an eversible pharynx. One of the most conspicuous of the eunicids is the giant, dark-purple, iridescent "Bobbit worm", a bristle worm found at low tide under boulders on southern Australian shores. Its robust, muscular body can be as long as 2 m. Eunicidae jaws are known from as far back as Ordovician sediments. Cultural tradition surrounds Palola worm reproductive cycles in the South Pacific Islands. Eunicidae are economically valuable as bait in both recreational and commercial fishing. Commercial bait-farming of Eunicidae can have adverse ecological impacts. Bait-farming can deplete worm and associated fauna population numbers, damage local intertidal environments and introduce alien species to local aquatic ecosystems.

<span class="mw-page-title-main">Marine invertebrates</span> Marine animals without a vertebrate column

Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have evolved a shell or a hard exoskeleton. As on land and in the air, marine invertebrates have a large variety of body plans, and have been categorised into over 30 phyla. They make up most of the macroscopic life in the oceans.

<span class="mw-page-title-main">Macrobenthos</span> Organisms that live at the bottom of a water column

Macrobenthos consists of the organisms that live at the bottom of a water column and are visible to the naked eye. In some classification schemes, these organisms are larger than 1 mm; in another, the smallest dimension must be at least 0.5 mm. They include polychaete worms, pelecypods, anthozoans, echinoderms, sponges, ascidians, crustaceans.

<span class="mw-page-title-main">Cambrian substrate revolution</span> Diversification of animal burrowing

The "Cambrian substrate revolution" or "Agronomic revolution", evidenced in trace fossils, is a sudden diversification of animal burrowing during the early Cambrian period.

A number of assemblages bear fossil assemblages similar in character to that of the Burgess Shale. While many are also preserved in a similar fashion to the Burgess Shale, the term "Burgess Shale-type fauna" covers assemblages based on taxonomic criteria only.

<span class="mw-page-title-main">Microbial mat</span> Multi-layered sheet of microorganisms

A microbial mat is a multi-layered sheet of microorganisms, mainly bacteria and archaea, or bacteria alone. Microbial mats grow at interfaces between different types of material, mostly on submerged or moist surfaces, but a few survive in deserts. A few are found as endosymbionts of animals.

The Cambrian explosion, Cambrian radiation,Cambrian diversification, or the Biological Big Bang refers to an interval of time approximately 538.8 million years ago in the Cambrian Period of early Paleozoic when there was a sudden radiation of complex life and practically all major animal phyla started appearing in the fossil record. It lasted for about 13 – 25 million years and resulted in the divergence of most modern metazoan phyla. The event was accompanied by major diversification in other groups of organisms as well.

<span class="mw-page-title-main">Fezouata Formation</span> Burgess shale-type deposits

The Fezouata Formation or Fezouata Shale is a geological formation in Morocco which dates to the Early Ordovician. It was deposited in a marine environment, and is known for its exceptionally preserved fossils, filling an important preservational window beyond the earlier and more common Cambrian Burgess shale-type deposits.

<span class="mw-page-title-main">Annelid</span> Phylum of segmented worms

The annelids, also known as the segmented worms, are a large phylum, with over 22,000 extant species including ragworms, earthworms, and leeches. The species exist in and have adapted to various ecologies – some in marine environments as distinct as tidal zones and hydrothermal vents, others in fresh water, and yet others in moist terrestrial environments.

<span class="mw-page-title-main">Oyster reef</span> Rock-like reefs, composed of dense aggregations of oysters

The term oyster reef refers to dense aggregations of oysters that form large colonial communities. Because oyster larvae need to settle on hard substrates, new oyster reefs may form on stone or other hard marine debris. Eventually the oyster reef will propagate by spat settling on the shells of older or nonliving oysters. The dense aggregations of oysters are often referred to as an oyster reef, oyster bed, oyster bank, oyster bottom, or oyster bar interchangeably. These terms are not well defined and often regionally restricted.

<i>Eunice aphroditois</i> Species of worm

Eunice aphroditois, commonly referred to as the Bobbit Worm, is a benthic bristle worm of warm marine waters, found in the Atlantic Ocean and the Indo-Pacific. It ranges in length from less than 10 cm (4 in) to 3 m (10 ft). Its iridescent cuticle produces a wide range of colors, from black to purple. This species is an ambush-predator; it hunts by burrowing its whole body in soft sediment on the ocean floor and waiting until its antennae detect prey. It then strikes with its sharp mouthparts. It may also be found among coral reefs.

<span class="mw-page-title-main">Benthic-pelagic coupling</span> Processes that connect the benthic and pelagic zones of a body of water

Benthic-pelagic coupling are processes that connect the benthic zone and the pelagic zone through the exchange of energy, mass, or nutrients. These processes play a prominent role in both freshwater and marine ecosystems and are influenced by a number of chemical, biological, and physical forces that are crucial to functions from nutrient cycling to energy transfer in food webs.

Goniadidae is a family of marine worms within the Polychaeta. Goniadids have long, slender bodies and can grow up to 260mm in length, although most are less than 50mm long. Goniadids have an eversible proboscis with a circlet of chitinous jaws around the terminal end.

References

  1. Jones, Meredith (1978). "Three new species of Magelona (Annelida, Polychaeta) and a redescription of Magelona pitelkai Hartman". Proceedings of the Biological Society of Washington. 91 (1): 336–363.
  2. Harris, R; Pilditch, C; Greenfield, B; Moon, V; Kröncke, I (2016). "The Influence of Benthic Macrofauna on the Erodibility of Intertidal Sediments with Varying mud Content in Three New Zealand Estuaries". Estuaries and Coasts. 39 (3): 815–828. doi:10.1007/s12237-015-0036-2. JSTOR   44857719. S2CID   130923697 . Retrieved 2021-02-18.
  3. 1 2 3 4 Singleton, Nathan (2010). Regional Estuary Monitoring Programme (REMP) Data Report: Benthic Macrofauna Communities and Sediments – July 2007 to April 2008 (Report). Waikato Regional Council. Retrieved 2021-02-18.
  4. Thrush, S. F.; Hewitt, J. E.; Pridmore, R. D. (1989-09-01). "Patterns in the spatial arrangements of polychaetes and bivalves in intertidal sandflats". Marine Biology. 102 (4): 529–535. doi:10.1007/BF00438355. ISSN   1432-1793. S2CID   83789435.
  5. Ellis, J. I.; Clark, D.; Atalah, J.; Jiang, W.; Taiapa, C.; Patterson, M.; Sinner, J.; Hewitt, J. (2017-09-20). "Multiple stressor effects on marine infauna: responses of estuarine taxa and functional traits to sedimentation, nutrient and metal loading". Scientific Reports. 7 (1): 12013. doi:10.1038/s41598-017-12323-5. ISSN   2045-2322. PMC   5607226 . PMID   28931887.
  6. Chen, Hong; Parry, Luke A.; Vinther, Jakob; Zhai, Dayou; Hou, Xianguang; Ma, Xiaoya (July 2020). "A Cambrian crown annelid reconciles phylogenomics and the fossil record". Nature. 583 (7815): 249–252. doi:10.1038/s41586-020-2384-8. ISSN   1476-4687. PMID   32528177. S2CID   219567905.